tenglamaning ham yechimi bo’ladi va aksincha. Elementar almashtirishlar natijasida hosil bo’lgan tenglamalar sistemasining yechimi tenglamalar sistemasini yechimi bo’ladi. Teorema isbot bo’ldi.
Shuni ta’kidlaymizki, elementar almashtirishlar ta’rifini chiziqli tenglamalar sistemasiga bog’liq bo’lmagan ravishda matrisalarga ko’chirishimiz mumkin, ya’ni ekvivalent matrisalar deyiladi, agar elementar almashtirish yordamida biridan ikkinchisiga o’tish mumkin bo’lsa. Bu haqiqatan ekvivalentlik munosabat bo’lib, matrisalar to’plamini kesimaydigan sinflarga ajratadi.
Endi biz sistemani yechilish masalasini baholash va hal qilishning amaliy ravishda topishda eng qulay va hamma tomonlama qo’llanadigan noma’lumlarni ketma-ket yo’qotish usulini yoki Gauss usulini (metodini) keltiramiz.
1) Faraz qilaylik, sistemada bo’lsin. U holda sistemaning birinchi tenglamasini ga ko’paytirib mos ravishda boshqa satrlarga qo’shsak, hosil bo’lgan sistemaning hamma oldidagi koeffisiyentlari nolga aylanadi.
2) Agar bo’lsa, ning koeffisiyentlari orasida noldan farqli bo’lgan tenglamasini izlaymiz va tip elementar almashtirishlar yordamida sistemaning birinchi tenglamasi bilan o’rinlarini almashtirib, yana biz birinchi xolatga kelamiz.
3) Agar oldidagi hamma koeffisiyentlar nollardan iborat bo’lsa, biz birinchi yoki ikkinchi holatlarni noma’lum uchun qo’llaymiz va hokazo.
Natijada biz sistemaga ekvivalent (teng kuchli) bo’lgan va matrisasi zinapoyali shaklda bo’lgan sistemaga kelamiz. Hosil bo’lgan sistemaga qarab, quyidagi xulosalarga kelamiz:
1) Agar sistemaning zinapoyali shaklda chap tomonida nol va o’ng tomonida noldan farqli hadlar qatnashuvchi tenglamalar qatnashsa, bunday sistema birgalikda bo’lmaydi.
2) Agar sistemaning zinapoyali shakli matrisani uchburchakli bo’lgan sistemali
(1)
birinchi holatga kelamiz va bo’lganligidan, sistema birgalikda bo’lib, aniqdir. Bu holda (1) ning oxirgi
tenglamasidan noma’lum topiladi. Topilgan noma’lumni bitta yuqoridagi tengligiga qo’yib, topiladi va hokazo. Natijada bu hamma larni topamiz. Bular (1) ning va demak unag ekvivalent bo’lgan (2) sistemaning yagona yechimi bo’ladi.
3. Sistemaning zinapoyali shaklida zinapoya uchlarida turuvchi noma’lumlar soni ta bo’lsin. U holda ularni tenglamalarni chap tomoniga qoldirib, qolgan hamma ta noma’lumlarni tenglamalarning o’ng tomoniga o’tkazilib, ozod o’zgaruvchilar sifatida qabul qilamiz. Sistemaning chap tomonida turgan ta noma’lumlar ta tenglamalar sistemasi uchburchakli shakli sistema bo’ladi. Endi tenglamalarni o’ng tomoniga o’tgan noma’lumlar qiymatlar berib, qolgan ta noma’lumlarni 2) holatga asosan topamiz va demak sistema cheksiz ko’p yechimlar ega, ya’ni birgalikda aniqmas.
Agar bizga chiziqli bir jinsli tenglamalar sistemasi berilgan bo’lsa, uni uchburchak shaklga kelishi yagona nol yechimga ega ekanligini va agar u zinapoya shaklda bo’lsa, aniqmas bo’ladi, ya’ni cheksiz ko’p yechimlarga ega bo’ladi. Bundan tashqari qaralayotgan sistemada tenglamalar soni noma’lumlar sonidan kichik bo’lsa, ya’ni , u holda sistemamiz uchburchak shakliga keltirilishi mumkin emas, chunki Gauss metodi bo’yicha o’zgartirish prosessida tenglamalar soni kamayishi mumkin, ammo ortishi mumkin emas va demak sistema zinapoyasimon shaklda keltiriladi, ya’ni aniqmas bo’ladi.
Misollar. Ushbu sistemalarni baholang va yeching:
1.
bu sistemaning kengaytirilgan matrisasini elementar almashtirishlar yordamida o’zgartiramiz:
Do'stlaringiz bilan baham: |