Chapter 1: complex number



Download 0,77 Mb.
Pdf ko'rish
bet6/9
Sana19.02.2022
Hajmi0,77 Mb.
#457810
1   2   3   4   5   6   7   8   9
Bog'liq
LECTURE-1 Complex number S1 2021-2022

1.2
 
The Rectangular and Polar form of Complex number 
(
z
)
 
Rectangular form of 
(
z
)
(Argand diagram) 
any complex number with 
z
i
a
b
 
form can be represent by an ordered pair 


a
b

and 
hence plotted on 
xy

axes with the real part measured along 
the 
x

axis and the imaginary part along the 
y

axis. This 
graphical representation of the complex number field is called 
an Argand diagram, named after the Swiss mathematician Jean 
Argand (1768–1822). Recall from the 
Section
above that a 
complex number is any number that can be written in the form 
z
i
a
b
 
, where 
a
and 
b
are real numbers and 
i
is 
Figure 8 
(Complex Plane) 
Im
 
Re
a
b
 
,
a
b
0
a
b
i



IIUM, Faculty of Engineering
 
Department Engineering in Science 
Engineering Mathematics I
 
Semester 1, 2021/2022
 
Chapter I:
 
Complex Numbers
 
Lecturer
Associate Professor Dr. Abdurahim Okhunov
16
called the 
imaginary unit
. Thus, associated with each complex number 
z
i
a
b
 
is a unique 
ordered pair of real numbers 


a
b

, and vice versa. For example, 
3
i
5

corresponds to 


,
3
5


According these ordered pairs of real numbers with points in a rectangular coordinate system, we 
obtain a complex plane (
See Figure 8
). 
Example 9 
(
Plotting in the Complex Plane
)

Plot the following complex numbers in a complex plane: 
1
2
3
4
i
i
2
3
=
,
=
,
=
3
4
,
z
z
z
z
=
i
,
5
3

 


Solution: 
Polar (Trigonometric form) form of 
 
Consider the complex number 
z
i
a
b
 
as represented on an Argand diagram. The 
position of 
A
can be expressed as coordinates 


a
b

, the Cartesian form, or in terms of the length and 
direction of 
OA
. Using Pythagoras’ theorem, the length of 
2
2
O
z
A
=
r
=
a
b
N



is read as the 
modulus
or 
absolute value
of 
z
.
The angle that 
OA
makes with the positive real axis is 
1
tan
b
a


 

 
 

The 
argument
(or 
phase
) of 
z
is 

, let us try to express it as a function of 
a

b

From trigonometry one 
sees that for any complex number 
z
i
a
b
 
one has 
cos
z
a


and 
sin
z
b


so that, 


cos
sin
cos
sin
z
z
z
z
i
i








and 
x
y
3

2
0
2
3
A
i
 
x
y
3

5

0
3
5
B
i
  
4
0
C
i
  
x
y
0
3
D
i
 


IIUM, Faculty of Engineering, 
 
Department Engineering in Science 
Engineering Mathematics I
 
Semester 1, 2021/2022
 
Chapter I:
 
Complex Numbers
 
Lecturer
Associate Professor Dr. Abdurahim Okhunov
17
sin
tan
cos
b
a






The complex number 
a
b
i

can be 
represented geometrically by the point 


a
b

. This 
point can also be expressed in terms of 
polar 
coordinate


r


, where 
0
r

, see 
Figure 9

Definition 5 
(Trigonometric form)

The trigonometric representation of the complex number 
Z



cos
sin
cos
sin
z
z
z
z
i
b
i
i
a




 




where 

, called the
argument 
is given by
sin
2
2
z
b
b
a
b
+




cos
2
2
z
a
a
a
b
+



(1) 
The representation is often referred to as the polar – coordinate form. 
Therefore 
 
1
g
tan
Ar
z
a
b


 


 
 
where the range of 
1
tan

is 


,
 

, and one has to be 
careful that there are special cases depending on the sign of 
a

b

 
1
1
1
tan
;
tan
,
;
ta
0
0
0
.
0
0
rg
n
A
,
a
a
b
a
b
z
a
a
b
b
a
b







 


 
 





 






















and 
 
Arg
indete
0
0
0
,
;
,
rminate
0
,
0
.
0
;
a
b
a
z
b
a
b
2
2









  








Note that the argument 

is not uniquely defined: If 

first in (1), then 
2
k




,
,
1 2
k
  
also 
fit. A convention is to choose 

to be in region 


180
180
  

  

 
. If 


90
90
2
2




  
  
we find 

as 
tan
acr
b
a

 

 
 
, since 
sin
tan
cos
b
a






Example 10: 
Given complex number as 
z
3
3
i
3
 
then find its modulus, argument (phase) and polar 
form? 
Figure 9
 
Im
 
Re
 
a
b
 
,
a
b
0
a
b
i


r


IIUM, Faculty of Engineering, 
 
Department Engineering in Science 
Engineering Mathematics I
 
Semester 1, 2021/2022
 
Chapter I:
 
Complex Numbers
 
Lecturer
Associate Professor Dr. Abdurahim Okhunov
18
Solution: 
First norm of 
z
3
3
i
3
 
is 
 
 
2
2
3
3 3
9
9 3
9
27
3
r
z
6
6



  


 

second the Argument (phase) is 
 
 
1
1
tan
Arg
tan
3 3
3
3
3
z















and last polar form of 
z
3
3
i
3
 
is 
cos
sin
i
3
6
6
3
e
i
=
z
3





 







Example 11: 
Write 
1
z
i
  
in polar form. 
Solution: 
   
 
2
1
2
,
,
tan
cos
Arg
s
1
1
1
1
2
1
2
i
4
4
4
n
z
=
b
r
z
,
i
a





 












  
   
















Relationship between Rectangular and Polar forms 
Trigonometric Representations:
Let us recall the polar coordinates 
a
r
= =
x
cos

and 
r
=
b
=
y
sin

. Using this representation, we have that 
=
=
= c
z
a
r
r
i
x
o
i
s
y
b
sin
i
+


 
 


Thus, any complex number 
z
b
a
i
 
can be written in 
polar form



a
r
r
= cos +
sin =
r
c
b
i
i
i
s + sin
z
o




  

(3) 
Where 
2
2
z
r
a
b



, and 
tan
a
=
b

. The angle 

is called an 
argument
of complex number 
z
i
a
b
  
and is denoted by 
1
( ) = tan
Arg
b
z
a
=


 
 
 
. Observe that 
Arg
( )
Z
is not unique. 
Adding or subtracting any integer multiple of 
2

0
2
-
<



gives another argument of 
z

However, there is only one argument 

that satisfies 
<





. This is called the 

Download 0,77 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish