Chapter 1: complex number


Appendix (Complex Trigonometric Functions)



Download 0,77 Mb.
Pdf ko'rish
bet9/9
Sana19.02.2022
Hajmi0,77 Mb.
#457810
1   2   3   4   5   6   7   8   9
Bog'liq
LECTURE-1 Complex number S1 2021-2022

Appendix (Complex Trigonometric Functions) 
We define the trigonometric or circular functions 
sin
z

cos
z
, etc., in terms of exponential 
functions as follows: 
Note that the usual formulas for exponentiation work with this definition. 
The complex-valued basic trigonometric functions are also defined via exponential function as 
follows: 








sin
,
cos
sin
cos
tan
,
cot
cos
sin
sec
,
csc
cos
1
1
2
2
1
2
1
in
2
s
z
z
z
z
i
i
i
i
i
i
i
i
i
i
i
i
i
i
z
z
z
z
z
z
z
z
z
z
z
i
z
i
=
=
=
=
z
z
z
z
z
z
z
z
z
z
z
z
i
=
=
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
i
i
i
e




















Many of the properties familiar in the case of real trigonometric functions also hold for the 
complex trigonometric functions. For example, we have: 
 
 
 






2
2
2
2
2
2
sin
cos
,
sec
tan
,
csc
cot
sin
sin ,
cos
cos ,
tan
tan
sin
sin
cos
cos
sin
,
cos
cos
sin
sin
cos
tan
t
1
1
1
1
an
tan
tan
tan
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
+
z
z
z
z
=
=
z
z
z
z
z
+
z
=
z
+
  
 
  









The following relations exit between the trigonometric or circular and the hyperbolic functions: 
sin
sin ,
cos
cos ,
tan
tan
sin
sin ,
cos
cos ,
tan
tan
z
z
z
z
z
z
z
z
i
i
i
z
z
=
=
=
=
i
i
i
i
i
i
h
h
h
h
h
=
=
i
h




Example 19 
(Finding of a Complex number)

In each part, express the value of the given trigonometric function in the form 
a
b
i
 

a)
cos
i
b)


sin
2
i

c)


tan
2
i




IIUM, Faculty of Engineering, 
 
Department Engineering in Science 
Engineering Mathematics I
 
Semester 1, 2021/2022
 
Chapter I:
 
Complex Numbers
 
Lecturer
Associate Professor Dr. Abdurahim Okhunov
28
Solution: 
a)




 




2
2
1
1
1
1
1
1
1
1
cos
5431
2
2
2
2
.
i i
i i
i
i
=
=
=
e
e
e
e
e
e
e
e
=
i
 

 








b)
In this case we have that 


 
 




 








 
 




2
2
2
1
2
2
1 2
1 2
1 2
1
2
1
2
1
1
1
1
2
2
2
2
sin
cos
sin
cos
sin
.
.
.
1
1
2
2
1
2
2
2
2
2
1
0 9781 2 8062
1 4031 0 4891
2
.
.
2
2
i
i
i
i
i
i
i
i
i
i
i
i
i
i
e
e
e
e
e
e
i
i
i
i
i
i
i
e
e
e
e
e e
e
e
i
i
=
=
=
=
=
=
i
i
i



  

 
 
 











 




 







c)
In this case we have that 












































2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
sin
2
2
2
2
1
2
tan
co
2
2
s
2
2
2
2
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
=
i
i
i
i
i
i
i
i
e
e
e
e
e
e
e
e






































 
  

 


 




 
  
























 
2
2
0 96
.
40
.
e
e
i
i














2
2
2
2
2
2
2
2
0
0
1
1
2
2
2
1
0
cos
sin
cos
sin
cos
sin
cos
sin
cos
sin
cos
sin
cos
sin
c
i
i
i
i
e
e
e
e
e
e
e
e
e
e
e
e
e
e
applying Eulor
i
i
i
i
i
i
formua
i
l
i
i
e
i




















 



 





























































 
 
 
2
0
1
2
2
2
2
2
1
os
sin
1
1
1
1
1
i
i
e
e
e
e
e
i
i
i



























 
  

 


 
  




2
2
1
e
e




2
2
2
2
2
2
.
e
e
e
i
i
e
e
e




 







Example 20 
(Finding of a Complex number)

Express in the form 
a
b
i
 

a)
6
cos
sin
2
2
i









and b) 


10
1
3



IIUM, Faculty of Engineering, 
 
Department Engineering in Science 
Engineering Mathematics I
 
Semester 1, 2021/2022
 
Chapter I:
 
Complex Numbers
 
Lecturer
Associate Professor Dr. Abdurahim Okhunov
29
Solution: 
6
a)
cos
sin
cos
sin
cos
si
6
6
2
2
2
2
3
3
1
0
1
n
.
i
i
i
i

















  
 


10
10
10
10
10
1
3
2
2
3
3
3
3
1
3
1024
512
512
3
2
2
b)
cos
sin
cos
sin
.
i
i
i
i






























 

 








Download 0,77 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish