Ikki o‘zgaruvchili funksiyaning lokal ekstremumlari. Berilgan z=f (x,y) funksiya tekislikdagi biror D sohada aniqlangan bo‘lib, M0(x0, y0) bu sohaning ichki nuqtasi bo‘lsin.
Ta'rif.Agar M0(x0, y0) nuqtaning biror Ur(x0, y0) atrofiga tegishli ixtiyoriy M(х,у) nuqta uchun
f (x0, y0)≥ f (x,y) [f (x0, y0)≤ f (x,y)] (1)
tengsizlik bajarilsa, unda z=f (x,y) funksiya M0(x0, y0) nuqtada lokal maksimumga (minimumga) ega deyiladi.
Masalan, f(x,y)=4–x2–y2 funksiya M0(0,0) nuqtada lokal maksimumga ega, chunki bu nuqtaning ixtiyoriy atrofidagi M(х,у) nuqtalar uchun f(x,y)≥4=f(0,0). Xuddi shunday g(x,y)=4+x2+y2 funksiya M0(0,0) nuqtada g(0,0)=4 lokal minimumga ega ekanligi ko‘rsatiladi.
1-ta’rifda f (x0, y0)≥ f (x,y) [f (x0, y0)≤ f (x,y)] tengsizlik faqat M0(x0, y0) nuqtaning biror kichik atrofida bajarilishi talab etiladi. Bu tengsizlik, biz yuqorida ko‘rgan misoldagi singari, M0(x0, y0) nuqtaning ixtiyoriy atrofida o‘rinli bo‘lishi shart emas. Shu sababli f(x0, y0) lokal maksimum yoki minimum deb atalmoqda.
Agar (1) tengsizlikda x=x0+∆x va y=y0+∆y deb olsak, uni lokal maksimum holida
,
lokal minimum holida esa ∆f ≥0 ko‘rinishda yozish mumkin. Shu sababli 1-ta’rifni funksiyaning to‘la orttirmasi orqali quyidagicha ifodalash mumkin.
Ta'rif.Agar M0(x0, y0) nuqtaning biror Ur(x0, y0) atrofida z=f (x,y)
funksiyaning to‘la orttirmasi uchun ∆f(x0, y0)≤0 (∆f(x0, y0)≥0) tengsizlik bajarilsa, unda bu funksiya M0(x0, y0) nuqtada lokal maksimumga (minimumga) ega deyiladi.
Ta'rif.Funksiyaning lokal maksimum va minimumlari birgalikda funksiyaning lokal ekstrеmumlari deyiladi.
2-ta’rifga asosan funksiya M0(x0, y0) nuqtada lokal ekstremumga ega bo‘lishi uchun uning bu nuqtadagi ∆f(x0, y0) to‘la orttirmasi ∆x va ∆y argument orttimalarining turli kichik qiymatlarida o‘z ishorasini o‘zgartirmasligi lozim.
Yuqoridagi misolda ko‘rib o‘tilgan f(x,y)=4–x2–y2 va g(x,y)=4+x2+y2 funksiyalar uchun lokal ekstremumlar f(x,y) va g(x,y) ifodalari bo‘yicha bevosita topildi. Ammo murakkabroq ko‘rinishdagi funksiyalar uchun bunday qilib bo‘lmaydi. Shu sababli umumiy holda ikki o‘zgaruvchili funksiyaning lokal ekstrimumlarini topish masalasi paydo bo‘ladi. Bu masala bir o‘zgaruvchili funksiyalar uchun oldin (VI bob,§5) ko‘rilgan edi. Bu yerda z=f (x,y) funksiyani ekstremumga tekshirish ham shunga o‘xshash amalga oshirilishini ko‘ramiz.
1-TEOREMA(Ferma teoremasi): Agar z=f(x,y) funksiya M0(x0,y0) nuqtada lokal ekstrеmumga erishsa va bu nuqtada uning ikkala xususiy hosilalari mavjud bo‘lsa, unda ular nolga tеng bo‘ladi, ya’ni
(2)
tengliklar o‘rinli bo‘ladi.
Isbot: z=f(x,y) funksiyada y=y0 deb olamiz va bunda hosil bo‘ladigan bir o‘zgaruvchili h(x)= f(x,y0) funksiyani qaraymiz. Teorema shartiga ko‘ra bu funksiya x=x0 nuqtada lokal ekstremumga ega va uning hosilasi mavjud. Unda, bir o‘zgaruvchili funksiyalar uchun oldin isbotlangan Ferma teoremasiga asosan (VII bob,§5), ekanligi kelib chiqadi. Xuddi shunday tarzda tenglik o‘rinli ekanligi ko‘rsatiladi va teoremaning isboti yakunlanadi.
Bu teorema ekstremumning zaruriy shartini ifodalaydi va undan ushbu natija kelib chiqadi.
NATIJA: Agar z=f(x,y) funksiya M0(x0,y0) nuqtada lokal ekstrеmumga erishsa va differensiallanuvchi bo‘lsa, unda bu nuqtada uning differensiali df(x0,y0)=0 va gradienti gradf(x0,y0)=0 bo‘ladi.
Bu tasdiq bevosita (2) tengliklardan va differensial, gradient ta’riflaridan kelib chiqadi.
Masalan, yuqorida ko‘rilgan f(x,y)=4–x2–y2 funksiya uchun haqiqatan ham u lokal maksimumga erishadigan M0(0,0) nuqtada
tengliklar bajariladi.
(2) tengliklar lokal ekstremumning faqat zaruriy shartini ifodalab, lokal ekstremum bo‘lishi uchun yetarli emas.
Masalan, f(x,y)=x2 –y2 differensiallanuvchi funksiya grafigi 88-rasmda
ko‘rsatilgan sirtdan iborat.
88-rasm
Bu funksiya uchun O(0,0) nuqtada (2) tengliklar bajariladi, ammo bu nuqtada funksiya lokal ekstremumga ega emas. Haqiqatan ham bu holda to‘la orttirma
ko‘rinishda bo‘lib, ∆x>∆y bo‘lganda musbat, ∆x<∆y holda esa manfiy qiymat qabul etadi. Demak, O(0,0) nuqtaning ixtiyoriy atrofida ∆f(0, 0) to‘la orttirma o‘z ishorasini o‘zgartiradi va shu sababli bu nuqtada lokal ekstremum mavjud emas.
Bu funksiyaning grafigi bo‘lmish sirt quyidagi chizmada ko‘rsatilgan va unda
O(0,0) nuqta egar nuqta deb ataladi. Sirtlar uchun egar nuqta egri chiziqlar uchun burilish nuqtasiga o‘xshash xususiyatga ega bo‘ladi.
Ta'rif.Agar z=f(x,y) funksiyaning xususiy hosilalari mavjud bo‘lsa, unda (2) tengliklarni qanoatlantiruvchi nuqtalar bu funksiyaning kritik yoki statsionar nuqtalari deb ataladi.
Ferma teoremasidan funksiya lokal ekstremumlariga kritik nuqtalarida erishishi mumkinligi kelib chiqadi. Shu sababli funksiyani ekstremumga tekshirish uchun birinchi navbatda uning kritik nuqtalarini topish kerak. Agar z=f(x,y) funksiya uchun M0(x0,y0) kritik nuqta bo‘lsa, unda funksiya bu nuqtada yoki lokal maksimumga, yoki lokal minimumga ega yoki umuman lokal ekstremumga ega bo‘lmasligi mumkin. Shu sababli M0(x0,y0) kritik nuqta bu xususiyatlardan qaysi biriga ega ekanligini aniqlash masalasi paydo bo‘ladi. Bu masala ekstremumning yetarli shartini topish orqali hal etiladi. Buning uchun z=f(x,y) funksiya M0(x0,y0) kritik nuqtaning biror atrofida aniqlangan, uzluksiz hamda uzluksiz I va II tartibli hosilalarga ega deb hisoblaymiz. Quyidagi belgilashlar kiritamiz:
. (3)
2-TEOREMA(Ekstrеmumning yetarli shartlari): Agar z=f(x,y) funksiya uchun M0(x0,y0) kritik nuqta bo‘lsa, unda (3) belgilashlarda quyidagi tasdiqlar o‘rinli :
1. ∆>0, A>0 holda funksiya M0(x0,y0) kritik nuqtada lokal minimumga ega;
2. ∆>0, A<0 holda funksiya M0(x0,y0) kritik nuqtada lokal maksimumga ega;
3. ∆<0 holda funksiya M0(x0,y0) kritik nuqtada lokal ekstremumga ega emas.
Bu teoremani isbotsiz qabul etamiz.
Izoh: Agar ∆=0 bo‘lsa funksiyaning M0(x0,y0) kritik nuqtadagi xususiyatini bu teorema orqali aniqlab bo‘lmaydi. Bu holda javob funksiyaning ∆f(x0,y0) to‘la orttirmasining ishorasini tekshirish orqali topiladi.
Shunday qilib ikki o‘zgaruvchili z=f(x,y) funksiyani ekstremumga tekshirish quyidagi algoritm asosida amalga oshiriladi:
funksiyaning xususiy hosilalari hisoblanadi;
xususiy hosilalar nolga tenglashtirilib,
tenglamalar sistemasi hosil etiladi;
hosil etilgan tenglamalar sistemasi yechilib, funksiyaning kritik nuqtalari topiladi. Agar kritik nuqtalar mavjud bo‘lmasa, unda funksiya ekstremumga ega bo‘lmaydi;
funksiyaning II tartibli hosilalari topiladi;
kritik nuqtada (3) formulalar bo‘yicha A, B, C va ∆ qiymatlari hisoblanadi;
A, B, C va ∆ qiymatlari bo‘yicha kritik nuqtada funksiyaning xususiyati 2-teorema yordamida aniqlanadi.
Misol sifatida, f(x,y) = x2+ xy+y2 –3x– 6y funksiyani ekstrеmumga tekshiramiz. Bu holda
bo‘lib, ulardan tuzilgan
tenglamalar sistemasidan M0(0,3) kritik nuqtani topamiz. Bu yerda
bo‘lgani uchun A=2 , B=1 , C=2 va ∆=AC–B2=3 ekanligini ko‘ramiz.
Bunda ∆>0 ,A>0 va shu sababli,ekstremumning yetarli shartiga asosan, bu funksiya M0(0,3) kritik nuqta lokal minimumga ega va fmin=f(0,3)=32–18=–9 bo‘ladi.
Ikki o‘zgaruvchili funksiya lokal ekstremumiga doir ushbu iqtisodiy mazmunli masalani qaraymiz.
0>
Do'stlaringiz bilan baham: |