Operatsion xisobning differensial tenglamalarni yechishga tadbiqi.
O’zgarmas koeffitsientli chiziqli differensial tenglama berilgan bo’lsin:
x(n)(t)+a1x(n-1)(t)+...+ an-1x¢(t)+ anx(t)=f(t) (1)
bu tenglamaning x(0)=x0, x¢(0)=x0¢, . . . , x(n-1)(0)=x0(n-1) (2)
boshlang’ich shartlarni qanoatlantiruvchi xususiy yechimni topish talab qilinsin. (1) ning har ikkala tomonidagi ifodalardan tasvirlarga o’tsak,natijada
j(t)X(t)-y(t)=F(t) (3) yoki
x(t)×[ antn+an-1tn-1+...+a1t+a0] = =an[tn-1x0+tn-2x0¢+...+x0(n-1)]+an-1[tn-2x0+tn-3x0¢+...+x0(n-2)]+. . . . . . + a2[tx0+x0¢]+a1x0+F(t) (3*) tenglama hosil bo’ladi. (3) va (3*) larga yordamchi yoki tasvirlovchi yoki operator tenglama deyiladi.
(3)ni X(t) tasvirga nisbatan yechib so’ngra originalga o’tsak (1) tenglamaning (2) shartlarni qanoatlantiruvchi yechimi kelib chiqadi.
Misollar yechganda quyidagi formulalardan foydalanamiz.
x¢(t) ¬¸ tF(t)-x(0) ;
x¢¢(t) ¬¸ t2F(t)-[tx(0)+x¢(0)]
(*) x¢¢¢(t) ¬¸ t3F(t)-[t2x(0)+tx¢(0)+x¢¢(0)]
x1V(t) ¬¸ t4F(t)-[t3x(0)+t2x¢(0)+tx¢¢(0)+x¢¢¢(0)]
Misol. x(0)=0 boshlang’ich shartni qanoatlantiruvchi
dx/dt+x=1 differensial tenglamani yechimi topilsin.
Yechish: xt(t)+x(t)=1
tenglamani ikki tomonini e-tt ga ko’paytirib, [0;¥) oraliqda t bo’yicha integrallab. Laplas integraliga olib kelamiz va tasvir funktsiya F(t) ni topamiz:
e-tt[xt(t)+x(t)]dt = e-ttdt ,
e -ttxt(t)dt+e -ttx(t)dt=1/t
tF(t)-x(0)+F(t)=1/t bu yerda x(0)=0.
F(t)(t+1)=1/t ; F(t)=1/[t(t+1)]=1/t-1/(t+1)
Tasvir jadvalidan F(t) -¸®1-e-t yoki
x(t)=1-e-t .
Misol. y(0)=yt(0)=0 boshlang’ich shartni qanoatlantiruvchi
ytt+9y=1 ( y=f(t) )
differensial tenglamani yeching.
Yechish: ytt+9y=1 tenglamani ikki tomonini e-tt ga ko’paytirib, [0;¥) oraliqda t bo’yicha integrallab Laplas integraliga olib kelamiz va tasvir funktsiya F(t) ni topamiz:
e-txyttdx +9 e-txydx= e-txdx
t2F(t)+ty(0)-yt(0)+9F(t)=1/t bu yerda y(0)=0 , yt(0)=0.
t2F(t)+9F(t)=1/t ; F(t)=1/t(t2+9)=1/9t - t/9(t2+32)
Tasvir jadvalidan
1/t-¸®1 , t/(t2+32) -¸® cos3t
Demak
F(t)=1/9×1/t-1/9× t/(t2+32) -¸®1/9 -1/9×cos3t
yoki
y=1/9 -1/9×cos3t.
bu berilgan differensial tenglamani yechimi.
Misol. x¢¢¢(t)- x¢(t)=0 (4) tenglamaning
x(0)=3 ; x¢(0)=2 ; x¢¢(0)=1 (5)
boshlang’ich shartlarni qanoatlantiruvchi yechimini toping.
Avval operator tenglamasini tuzamiz. Buning uchun (4) ning chap tomonidan (*) ga ko’ra tasvirga ottamiz:
[t3F(t)-( 3t2+2t+1)]-[tF(t)-3]=0 Þ (t3-t)F(t)= 3t2+2t+1-3
(t3-t)F(t)= 3t2+2t-2 Þ F(t) = Þ
ni eng sodda kasrlarga ajrataylik :
= = Þ
3t2+2t-2 = A(t2-1)+Bt(t+1)+Ct(t_1)
3t2+2t-2 = At2-A+Bt2+Bt+Ct2_Ct .
t2 : A+B+C=3
t : B-C=2 Þ A=2 ; B=3/2 ; C=-1/2
t0 : -A=-2
Shunday qilib F(t)= 2/t+3/2 ×1/(t-1) - 1/2 ×1/(t+1)
Endi jadvalga kotra originallarga o’tsak, differensial tenglamaning javobi kelib chiqadi:
x(t)=2×1+3/2×et-1/2×e-t=2+3/2×et-1/2×e-t .
Misol. y¢¢(t)-2y¢(t)-3y(t)=e3t ya’ni y¢¢-2y¢-3y=e3t differensial tenglamaning y(0)=0 ; y¢(0)=0 boshlang’ich shartni qanoatlantiruvchi xususiy yechimini toping.
Yechish. Original-tasvir jadvaliga ko’ra
t2F(t)-[ty(0)+y¢(0)]-2[tF(t)-y(0)]-3F(t)=
t2F(t)- 2tF(t) -3F(t)= F(t)(t2-2t-3)= Þ F(t)=