Bir jinisli differensial tenglamalar


Ikkinchi tartibli chiziqli differensial tenglamalar haqida umumiy tushunchalar



Download 0,56 Mb.
bet5/13
Sana09.07.2022
Hajmi0,56 Mb.
#763677
1   2   3   4   5   6   7   8   9   ...   13
Bog'liq
BIR JINISLI DIFFERENSIAL TENGLAMALAR

4. Ikkinchi tartibli chiziqli differensial tenglamalar haqida umumiy tushunchalar. Fizika, mexanika, texnika va iqtisodning juda ko’p masalalarini yechish ikkinchi tartibli chiziqli differensial tenglamalarga keltiriladi.
Differensial tenglamada noma’lum funksiya va uning hosilalari birinchi darajada qatnashsa bunday tenglamaga chiziqli deyiladi. Ikkinchi tartibli chiziqli differensial tenglama quyidagi ko’rinishda bo’ladi:

bu yerda noma’lum funksiya, lar biror oraliqda berilgan uzluksiz funksiyalar, bo’lsa, (1) tenglamaga bir jinsli chiziqli differensial tenglama deyiladi. bo’lsa bir jinsli bo’lmagan chiziqli differensial tenglama deyiladi.
Bir jinsli va bir jinsli bo’lmagan tenglamalar yechimini topishda chiziqli bog’langan va chiziqli bog’lanmagan funksiyalar tushunchasidan foydalaniladi.
funksiyalar biror kesmada berilgan bo’lsin.
1-tahrif. SHunday o’zgarmas sonlar topilsaki, ulardan hech bo’lmaganda bittasi no’ldan farqli bo’lganda

ayniyat o’rinli bo’lsa, funksiyalarga chiziqli bog’langan funksiyalar deyiladi.
funksiyalar chiziqli bog’langan bo’lsa, ular proportsianal bo’ladi, ya’ni, bo’lib, bo’lsa,

bo’ladi.
Masalan, funksiyalar chiziqli bog’langan, chunki
2-tahrif. (2) tenglik faqat bo’lgandagina bajarilsa, funksiyalarga chiziqli bog’lanmagan funksiyalar deyiladi.
Funksiyalarning chiziqli bog’langan yoki chiziqli bog’lanmaganligini

Vronskiy determinanti yordamida tekshirish mumkin. funksiyalar oraliqda chiziqli bog’langan bo’lsa, ulardan tuzilgan Vronskiy determinanti no’lga teng bo’ladi. Bu funksiyalar uchun oraliqda tuzilgan Vronskiy determinanti no’ldan farqli bo’lsa ular chiziqli bog’lanmagan bo’ladi.
5. Ikkinchi tartibli o’zgarmas koffitsientli chiziqli bir jinsli differensial tenglamalar. Fan va texnika hamda iqtisodning ko’p masalalari (1) tenglamada funksiyalar o’zgarmas sonlar bo’lgan holdagi tenglamalarga keltiriladi. SHuning uchun bu funksiyalar o’zgarmas koffitsientlar bo’lgan holni alohida qaraymiz. Bu holda bir jinsli tenglama

ko’rinishda bo’lib lar o’zgarmas koffitsientlar. Bunday ko’rinishdagi tenglamaga ikkinchi tartibli, o’zgarmas koffitsientli, chiziqli, bir jinsli differensial tenglama deyiladi. (3) ko’rinishdagi tenglamaning yechimini topish bilan qiziqamiz.
funksiyalar (3) tenglamaning oraliqda chiziqli bog’lanmagan yechimlari bo’lsa,

funksiya uning umumiy yechimi bo’ladi, bu yerda ixtiyoriy o’zgarmaslar. Bu funksiyani (3) tenglamaga bevosita qo’yib ko’rsatish mumkin (buni bajarib ko’ring).
1-misol. differensial tenglamaning umumiy yechimini toping.
Yechish. Bevosita qo’yish bilan tekshirib ko’rish mumkinki,
berilgan tenglamaning yechimlari bo’ladi. Bu yechimlar chiziqli bog’lanmagan yechimlar bo’ladi, chunki Vronskiy determinanti

Demak, formulaga asosan, funksiya berilgan differensial tenglamaning umumiy yechimi bo’ladi.
SHunday qilib, bir jinsli tenglamaning umumiy yechimini topish uchun, uning ikkita chiziqli bog’lanmagan xususiy yechimini topish kifoya.
(3) tenglamaning yechimini , ko’rinishda izlaymiz, bu yerda noma’lum son. bo’lib,(3) tenglamadan
(5)
bo’ladi. (5) tenglik bajarilsa funksiya (3) tenglamaning yechimi bo’ladi.
(5) tenglamaga (3) differensial tenglamaning xarakteristik tenglamasi deyiladi. Xarakteristik tenglamaning yechimlari

bo’lib, bunda quyidagi uchta hol bo’lishi mumkin:

1) lar haqiqiy va har xil, ya’ni


2) haqiqiy va teng (karrali), ya’ni
3) kompleks sonlar, ya’ni bunda;
.
Har bir holni alohida qaraymiz:
1) bu holda funksiyalar chiziqli bog’lanmagan xususiy yechimlar bo’lib, umumiy yechim
(6)
bo’ladi.
2-misol. differensial tenglamaning umumiy yechimini toping.
Yechish. Berilgan tenglamaga mos xarakteristik tenglamani tuzamiz:

Xarakteristik tenglamaning ildizlari

bo’lib, umumiy yechim (6) formulaga asosan

bo’ladi.
2) Ikkinchi holda, xarakteristik tenglamaning ildizlari teng
bitta xususiy yechim bo’ladi. Ikkinchi xususiy yechimni ko’rinishda tanlaymiz. Bu funksiya ham (3) tenglamaning yechimi bo’ladi, haqiqatan ham

ifodalarni (3) tenglamaga qo’yib

tenglikni hosil qilamiz. xarakteristik tenglamaning ildizi bo’lganligi uchun oxirgi tenglikdagi birinchi qavs aynan no’lga teng, bo’lganligi uchun ikkinchi qavs ham aynan no’lga teng.
Demak, funksiya ham (3) tenglamaning yechimi bo’ladi, hamda yechimlar chiziqli bog’lanmagan (tekshirib ko’ring). Shunday qilib,
(7)
umumiy yechim bo’ladi.
3-misol. differensial tenglamaning umumiy yechimini toping.
Yechish. Berilgan tenglamaning xarakteristik tenglamasi

bo’lib, ildizlari bo’ladi (tenglamani yechib ko’rsating). Xarakteristik tenglamaning ildizlari o’zaro teng, (7) formulaga asosan funksiya berilgan tenglamaning umumiy yechimi bo’ladi.
3) Xarakteristik tenglamaning ildizlari kompleks, qo’shma:
bo’lganda xususiy yechimlarni


ko’rinishda olish mumkin. Bu ifodalarga


Download 0,56 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   13




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish