Bayesian Logistic Regression Models for Credit Scoring by Gregg Webster



Download 2,26 Mb.
Pdf ko'rish
bet27/58
Sana08.07.2022
Hajmi2,26 Mb.
#757017
1   ...   23   24   25   26   27   28   29   30   ...   58
 
Discrete state space 
 
The definition of a Markov chain is as follows: 
Definition 3.1 
Let 

)
be a stochastic process indexed by 
(often time) that 
takes values in the finite set 
{ }
(finite state space) or 
{ }
(infinite 
state space). If the Markov property


) ( 

)
holds true for all states 
j

k

k
t-1
, … , 
k
1

k
0
and all time steps 
, then 

)
is called a Markov chain.


50 
Therefore, the current state of a Markov chain only affects the next state. The 
are 
transition probabilities. These transition probabilities do not depend on the time 
. Since 
the 
are probabilities, we have 
and since the process remains in 

The transition probabilities are very important and it is useful to collect these transition 
probabilities in a matrix. The 
transition probability matrix is given by 
(

The 
i
th row of 
, specifies the distribution of the process at 
, given that it is in state 
at 
. For example, 
represents the probability of going to state 2 given that it is in state 
2.
We now consider multi-step transition probabilities 
( )
, which are defined as follows
( )


) ( 


The calculation of multi-step transition probabilities is made easy from the following 
Chapman-Kolmogorov lemma: 
 
Lemma 3.1
Let 

)
be a Markov chain with state space 
{ }
. Then, 
we have for the multi-step transition probabilities 
( )

( )
( )
Proof
:
 
( )



∑ ( 

)


51 


)

)

)

)
∑ ( 

) ( 

)
Now, using the Markov property we obtain 
( )
∑ ( 

) ( 


This implies, 
( )

( )
( )
The Chapman-Kolmogorov lemma can also be written in matrix form 
We now turn to a discussion of the classification of states. 
Some states will be visited over and over again, while others will only be visited a finite 
number of times and never visited again. Let, for a state 
{

Thus, 
is the time of first visit to state 
. Also let 


)
which is the probability that the Markov chain will return to state 
once it started there. 
There are two possible cases for the 
’s: 
1.
. This means that we are certain we will continuously return to state 
(over and over 
again). Such a state is called recurrent and will be visited infinitely many times.
2.
. This means that there is a positive probability of never returning to state 
. Such a 
state is called transient which will only be visited a finite amount of times.
We say that a state 
is accessible from state 
if there is 
such that 
( )
and 
write 
. State 
is accessible from state 
if with a finite number of steps we can come 


52 
from state 
to 
. Also, if 
and 
we then say that the states 
and 
communicate 
and expressed as 
. It can be shown that the communication relation is an equivalence 
relation between the states of 
. This means, we have for all states 
-
(reflexivity); 
-
If 
then also 
(symmetry); 
-
If 
and 
, then also 
(transitivity). 
A Markov chain is known as irreducible if there is only one communication class. This 
means that all states communicate (the process can reach any other state with positive 
probability). This would imply that for an irreducible Markov chain with finite state space, 
that all the states are recurrent.
The distribution 

)
is called a stationary (or invariant or limiting) distribution 
if 
. This limiting distribution, 
exists if the Markov chain is 
irreducible and all states are aperiodic (the greatest common divisor of the sets 
{
( )
}
is one).
We now introduce Markov chains for a continuous state space.

Download 2,26 Mb.

Do'stlaringiz bilan baham:
1   ...   23   24   25   26   27   28   29   30   ...   58




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish