Bayesian Logistic Regression Models for Credit Scoring by Gregg Webster



Download 2,26 Mb.
Pdf ko'rish
bet30/58
Sana08.07.2022
Hajmi2,26 Mb.
#757017
1   ...   26   27   28   29   30   31   32   33   ...   58
 
Definition 3.6 
Let
 

)
be a Markov chain and let 
. We then call 
-
the set 
Harris-recurrent if for all 
we have 


)

-
the Markov chain Harris-recurrent if it is 
–irreducible for some probability distribution 
and whenever 
( )
, then 
is Harris-recurrent.
 
Lemma 3.4 
Let
 

)
be a Markov chain with stationary distribution 
(with 
density 
). If 
and if the Markov chain is 
-irreducible and recurrent, then for any 
integrable function 
we have (with probability 1) 
∑ ( 
)
∫ ( ) ( )
( ( ))
for almost all starting values 
. If the Markov chain is Harris-recurrent, then the 
equation holds for all 
 
 
3.4.3 Markov chain Monte Carlo 
 
Markov chain Monte Carlo constructs a Markov chain that has as its stationary 
distribution, the target distribution. It does this by constructing an irreducible Markov 
chain, which ensures that most of the Markov chains resulting from an MCMC algorithm 
are recurrent or even Harris-recurrent. As explained, Harris recurrence ensures that the 
Markov chain converges to its stationary distribution for every starting value instead of 
almost every starting value. Thus, we need Harris recurrence to ensure that the MCMC 
algorithm converges. MCMC algorithms construct a transition kernel which results in a 


57 
Markov chain which is recurrent and converges to the target distribution. A general 
principle to do this is the Metropolis-Hastings (MH) algorithm. The Gibbs sampler is a 
special case of the MH algorithm.
 

Download 2,26 Mb.

Do'stlaringiz bilan baham:
1   ...   26   27   28   29   30   31   32   33   ...   58




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish