Bayesian Logistic Regression Models for Credit Scoring by Gregg Webster



Download 2,26 Mb.
Pdf ko'rish
bet58/58
Sana08.07.2022
Hajmi2,26 Mb.
#757017
1   ...   50   51   52   53   54   55   56   57   58
 
 
D2: R output for Bayesian logistic regression model on “new” data with non-
informative prior 
Iterations = 500001:510000 
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000
1. Empirical mean and standard deviation for each variable, 
plus standard error of the mean: 
Mean SD Naive SE Time-series SE 
(Intercept) -9.212e+00 1.538e+00 1.538e-02 1.258e-01 
LOAN 5.248e-06 1.398e-05 1.398e-07 1.135e-06 
MORTDUE -7.716e-06 6.984e-06 6.984e-08 5.136e-07 
VALUE 2.173e-06 5.727e-06 5.727e-08 4.358e-07 
REASONHomeImp 9.077e-02 3.562e-01 3.562e-03 2.747e-02 
JOBOffice -9.888e-01 5.947e-01 5.947e-03 4.724e-02 
JOBOther 1.646e-01 4.717e-01 4.717e-03 3.383e-02 
JOBProfExe 1.176e-01 5.555e-01 5.555e-03 3.766e-02 
JOBSales 3.568e+00 9.672e-01 9.672e-03 7.448e-02 
JOBSelf -2.271e-01 9.678e-01 9.678e-03 8.455e-02 
YOJ -2.852e-02 2.233e-02 2.233e-04 1.652e-03 
DEROG 7.688e-01 2.209e-01 2.209e-03 1.639e-02 
DELINQ 1.236e+00 1.742e-01 1.742e-03 1.204e-02 


125 
CLAGE -7.204e-03 2.083e-03 2.083e-05 1.461e-04 
NINQ 2.123e-01 7.219e-02 7.219e-04 5.723e-03 
CLNO -4.485e-02 1.744e-02 1.744e-04 1.458e-03 
DEBTINC 2.515e-01 3.642e-02 3.642e-04 3.043e-03 
2. Quantiles for each variable: 
2.5% 25% 50% 75% 97.5% 
(Intercept) -1.241e+01 -1.022e+01 -9.093e+00 -8.134e+00 -6.470e+00 
LOAN -2.320e-05 -4.472e-06 5.762e-06 1.545e-05 3.118e-05 
MORTDUE -2.196e-05 -1.203e-05 -7.241e-06 -2.907e-06 5.288e-06 
VALUE -9.056e-06 -1.559e-06 2.280e-06 5.789e-06 1.395e-05 
REASONHomeImp -5.866e-01 -1.532e-01 9.478e-02 3.365e-01 7.699e-01 
JOBOffice -2.101e+00 -1.392e+00 -9.925e-01 -5.842e-01 1.343e-01 
JOBOther -7.109e-01 -1.476e-01 1.516e-01 4.850e-01 1.116e+00 
JOBProfExe -9.444e-01 -2.559e-01 1.032e-01 4.617e-01 1.279e+00 
JOBSales 1.643e+00 2.937e+00 3.529e+00 4.213e+00 5.488e+00 
JOBSelf -2.182e+00 -8.519e-01 -1.890e-01 4.236e-01 1.624e+00 
YOJ -7.150e-02 -4.308e-02 -2.810e-02 -1.333e-02 1.415e-02 
DEROG 3.742e-01 6.119e-01 7.583e-01 9.061e-01 1.271e+00 
DELINQ 8.960e-01 1.116e+00 1.239e+00 1.349e+00 1.581e+00 
CLAGE -1.112e-02 -8.553e-03 -7.233e-03 -5.860e-03 -3.071e-03 
NINQ 6.882e-02 1.633e-01 2.130e-01 2.609e-01 3.505e-01 
CLNO -7.773e-02 -5.703e-02 -4.547e-02 -3.242e-02 -1.056e-02 
DEBTINC 1.894e-01 2.248e-01 2.482e-01 2.748e-01 3.295e-01 


126 


127 


128 

Download 2,26 Mb.

Do'stlaringiz bilan baham:
1   ...   50   51   52   53   54   55   56   57   58




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish