Bayesian Logistic Regression Models for Credit Scoring by Gregg Webster



Download 2,26 Mb.
Pdf ko'rish
bet54/58
Sana08.07.2022
Hajmi2,26 Mb.
#757017
1   ...   50   51   52   53   54   55   56   57   58
 


107 
References 
 
Altman, E., Marco, G., and Varetto, F. (1994). Corporate distress diagnostics: Comparison 
using linear discriminant analysis and neural networks (the Italian Experience). 
Journal of Banking and Finance 
18: 505-529. 
Bernardo, J.M. and Smith, A.F.M. (2000). 
Bayesian Theory. 
John Wiley & Sons, 
Chichester.
Biçer, I., Sevis, D., and Bilgiç, T. (2010). Bayesian credit scoring model with integration 
of expert knowledge and customer data.
Twenty-fourth Mini EURO Conference on 
Continuous Optimization and Information-Based Technologies in the Financial 
Sector
, Vilnius Gediminas Technical University Publishing House, Technika, pp. 
324–329. 
Chib, S. and Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm
. The 
American Statistician
49(4): 327-335. 
Crook, J. and Banasik, J. (2002). Does reject inference really improve the performance of 
application scoring models?
Working Paper Series 
No.
 
02/3

The Credit Research 
Centre, The School of Management, University of Edinburgh, pp. 1-27.
Desai, V.S., Crook, J.N., and Overstreet, G. (1996). Credit scoring models in credit union 
environment.
 European Journal of Operational Research
95: 24-35.
Dobson, A.J. and Barnett, A.G. (2008). 
An Introduction to Generalized Linear Models.
3rd 
Edition. Taylor & Francis Group, Boca Raton, Florida. 
Durand, D. (1941). Credit-rating formulae. In: 
Risk Elements in Consumer Instalment 
Financing
. pp. 83-91. National Bureau of Economic Research, Inc. Massachusetts. 
Faraway, J.J. (2006). 
Extending the Linear Model with R. 
Taylor & Francis Group, Boca 
Raton, Florida. 
Fernandes, G. and Rocha, C.A. (2011). 
Low Default Modelling
:
A Comparison of 
Techniques Based on a Real Brazilian Corporate Portfolio.
Available from 


108 
http://www.crc.man.ed.ac.uk/conference/archive/2011/Fernandes-Guilherme-Paper-
Low-default-modelling.pdf. Accessed date: 8th November 2011. 
Fisher, R. (1936). The use of multiple measurements in taxonomic problems.
Annual 
Eugenics
7(2): 179-188. 
Gelfand, A.E. and Smith, A.F.M. (1990). Sampling based approaches to calculating 
marginal densities.
 Journal of the American Statistical Association
85: 398-409. 
Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to calculating 
posterior moments. In: 
Bayesian Statistics 
4, Eds. J.M. Bernardo, J.O. Berger, A.P. 
Dawid, and A.F M. Smith, pp. 169-194, Clarendon Press, Oxford.
Greenberg, E. (2008). 
Introduction to Bayesian Econometrics
. Cambridge University 
Press, New York. 
Hand, D.J. and Henley, W.E. (1997). Statistical classification methods in consumer credit 
scoring: a review. 
Journal of the Royal Statistical Society
, Series A 160: 523-541. 
Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their 
application. 
Biometrika 
57:
 
97–109. 
Holmes, C. and Held, L. (2006). Bayesian auxiliary variable models for binary and 
multinomial regression.
 Bayesian Analysis
1: 145-168.
Hosmer, D.W. and Lemeshow, S. (2000). 
Applied Logistic Regression. 
2nd Edition. John 
Wiley & Sons, Inc., New York. 
Komorád, K. (2002). 
On Credit Scoring Estimation. 
Master’s Thesis. Humboldt 
University, Berlin. Available from http://edoc.hu-berlin.de/master/komorad-karel-
2002-12-18/PDF/komorad.pdf. Accessed date: 10th January 2011.
 
Kroese, D.P., Taimre, T., and Botev, Z.I. (2011). 
Handbook of Monte Carlo Methods. 
John 
Wiley & Sons, Inc., Hoboken, New Jersey. 
Lee, P.M. (2004). 
Bayesian Statistics
,
An Introduction.
3rd Edition.
 
Hodder Arnold, 
London. 


109 
Löffler, G., Posch, P.N., and Schöne, C. (2005). Bayesian methods for improving credit 
scoring models.
Technical report, Department of Finance, University of Ulm

Germany. 
Mendenhall, W. and Sincich, T. (2003). 
A Second Course in Statistics Regression 
Analysis. 
6th Edition. Pearson Education, Inc, New Jersey.
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E. (1953). 
Equations of state calculations by fast computing machines. 
Journal of Chemical 
Physics
21: 1087-1092. 
Mira, A. and Tenconi, P. (2004). Bayesian estimate of credit risk via MCMC with delayed 
rejection. In: 
Seminar on Stochastic Analysis, Random Fields and Applications IV.
Centro Stefano Franscini, Ascona, pp. 277-291. Birkhauser Verlag, Basel. 
Mok, J-M. (2009). 
Reject Inference in Credit Scoring. 
Available from 
http://www.few.vu.nl/en/Images/werkstuk-mok_tcm39-91398.pdf. Accessed date: 5th 
March 2011. 
Nelder, J. and Wedderburn, R. (1972). Generalized linear models.
Journal of the Royal 
Statistical Society
,
 
Series A 132: 370-384. 
Ntzoufras, I. (2009). 
Bayesian Modeling Using WinBUGS. 
John Wiley & Sons, Inc., 
Hoboken, New Jersey. 
Press, S.J. (1989). 
Bayesian Statistics
:
 Principles, Models, and Applications
.
 
John Wiley & 
Sons, Inc., Hoboken, New Jersey. 
Robert, C.P. and Casella, G. (2004). 
Monte Carlo Statistical Methods. 
2nd Edition. 
Springer-Verlag, New York. 
Robert, C.P. and Casella, G. (2010). 
Introducing Monte Carlo Methods with R. 
Springer- 
Verlag, New York. 
Rona-Tas, A. and Hiß, S. (2008). 
Consumer and Corporate Credit Ratings and the 
Subprime Crisis in the U.S. with some Lessons for Germany
. Available from 
http://weber.ucsd.edu/~aronatas/The%20Subprime%20Crisis%202008%2010%2004.p
df. Accessed date: 22nd September 2011.
 


110 
Steenackers, A. and Goovaerts, M. (1989). A credit scoring model for personal loans

Insurance: 
Mathematics and Economics
8: 31-34.
Suess, E.A. and Trumbo, B.E. (2010). 
Introduction to Probability Simulation and Gibbs 
Sampling with R. 
Springer-Verlag, New York. 
Thomas, L.C. (2009). 
Consumer Credit Models
:
Pricing, Profit and Portfolios. 
Oxford 
University Press, Oxford. 
Whittacker, J., Whitehead, C., and Somers, M. (2007). A dynamic mortgage scorecard 
using Kalman filtering.
 Journal of the Operational Research Society
58: 911-921. 
Wielenga, D., Lucas, B., and Georges, J. (1999). 
Enterprise Miner
TM
:
Applying Data 
Mining Techniques Course Notes
. SAS Institute Inc., Cary, North Carolina.
Wilhelmsen, M., Dimakos, X.K., Husebø, T., and Fiskaaen, M. (2009). 
Bayesian 
Modelling of Credit Risk using Integrated Nested Laplace Approximations. 
Available 
from http://publications.nr.no/BayesianCreditRiskUsingINLA.pdf. Accessed date: 
21st November 2010. 
Wood, S.N. (2006). 
Generalized Additive Models, An Introduction with R
. Taylor & 
Francis Group, Boca Raton, Florida. 
Ziemba, A. (2005). 
Bayesian Updating of Generic Scoring Models. 
Available from 
http://www.crc.man.ed.ac.uk/conference/archive/2005/papers/ziemba-arkadius.pdf. 
Accessed date: 25th November 2010. 


111 

Download 2,26 Mb.

Do'stlaringiz bilan baham:
1   ...   50   51   52   53   54   55   56   57   58




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish