Bayesian Logistic Regression Models for Credit Scoring by Gregg Webster



Download 2,26 Mb.
Pdf ko'rish
bet26/58
Sana08.07.2022
Hajmi2,26 Mb.
#757017
1   ...   22   23   24   25   26   27   28   29   ...   58
 
Theorem 3.1 
If 


)

)
where 
are i.i.d. from a density 
( )
such 
that 
( )
whenever 
( )
and 
∫ ( )
then 
1.
( ) ∫ ( )
2.
( )
is minimized if 
( )
| ( )|
∫ | ( )|

Proof: 
1.
( ) (


)

)
) (
( )
( )
) ∫
( )
( )
( ) ∫ ( )
2.
From Equation (3.22) 
(∫ | ( )| )
is the lower bound for 
(
( )
( )
)
which is what we 
want to minimize. Now, if 
( )
| ( )|
∫ ( )
(
( )
( )
)
∫ ( ( ))
∫ | ( )|
| ( )|
∫ | ( )|
∫ | ( )|
(∫ | ( )|
)
Thus, for this choice of 
( )
we are at the lower bound and variance is minimized. Now, 
the practical use of Theorem 3.1 is very limited. This is because we need to know the 
integral 
∫ | ( )|
which is for 
( )
the same as 
∫ ( )
. But
∫ ( )
is what 
we are looking to estimate in the first place. This theorem does, however, help us to choose 
a good 
( )
. We should try to achieve 
( )
( )
Therefore, we should sample more 


49 
points in regions where 
( )
is large. Thus, the “important” parts of the integral will be 
estimated better. This is why the method is called importance sampling.
 
3.4.2 Markov chains 
An overview of Markov chains is given in this section. The simulation methods described 
previously cannot easily be applied in all cases. Monte Carlo integration and importance 
sampling can be applied when we are dealing with standard distributions. However, when 
we face a non-standard distribution (such as the case with Bayesian logistic regression) the 
previous simulation techniques cannot easily be used to obtain samples from any posterior 
distribution. If they are used, they are subject to major practical difficulties. Markov Chain 
Monte Carlo (MCMC) methods provide a way out.
Markov Chain Monte Carlo methods have greatly improved the scope for Bayesian 
inference (Robert and Casella, 2004; Greenberg, 2008). Because MCMC relies on Markov 
chains, they are now introduced with both discrete and continuous state spaces.

Download 2,26 Mb.

Do'stlaringiz bilan baham:
1   ...   22   23   24   25   26   27   28   29   ...   58




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish