Bayesian Logistic Regression Models for Credit Scoring by Gregg Webster



Download 2,26 Mb.
Pdf ko'rish
bet25/58
Sana08.07.2022
Hajmi2,26 Mb.
#757017
1   ...   21   22   23   24   25   26   27   28   ...   58
 
 


46 
Monte Carlo integration
 
Monte Carlo integration is a statistical technique for approximating integrals. It uses 
simulation to obtain an estimate of the integral which has a mean and a variance. One 
method of Monte Carlo Integration is the sample mean approach. This method is described 
below for the estimation of the integral, 
∫ ( )
. The following approach is 
discussed in Suess and Trumbo (2010). 
Now, if 
( )
then
( ( )) ∫ (
) ( )
∫ ( )
. Therefore, 
∫ ( ) ( ) ( ( )) 
The integral 
∫ ( )
can, therefore, be approximated by 


)
(3.19) 
where 
are random numbers from 
( )
. The mean and variance of this 
estimator is derived as follows: 
( ) (
∑ ( 
))
( ( ))
∫ ( )
Therefore, the estimator in Equation (3.19) is an unbiased estimator for the integral, 
∫ ( )
. Now, for the variance 
( ) (
∑ ( 
)) 
( )
( ( )) 
( )
( ( ( )
) ( ( ( )))
( )
∫ ( ( ))
(
∫ ( )
)
( ) ∫ ( ( ))
(∫ ( )
)
(3.20) 


47 
So, we have that 
( )
.
Importance sampling 
Importance sampling is used to reduce the variance of a Monte Carlo estimate of an 
integral. From Equation (3.20) the standard deviation of an estimator for the integral, 
is 
( )
√ 
. Thus, the standard deviation of the estimator decreases as 
increases, but at 
a decreasing rate. This means that if we increase the number of random points from 
to 
points, the standard deviation is improved from the order of 
to 

Therefore, quite a large number of random points are needed to obtain a noticeable 
improvement in accuracy. Importance Sampling aims to improve the standard deviation of 
a Monte-Carlo estimate. The idea is as follows as seen in Robert and Casella (2004). 
Consider a density 
( )
on 
with the property that 
( )
whenever 
( )

Then
∫ ( ) ∫
( )
( )
( )
(
( )
( )
)
if 
( )

Therefore, in order to obtain an estimate for 
∫ ( )
using importance sampling, we 
sample 
from 
( )
and estimate
∫ ( )


)

)
(3.21) 
The new estimator is given by 


)

)
and the variance of 
is given by 
( ) (


)

)

(
( )
( )

[ (
( )
( )
)
( (
( )
( )
))

[∫
( ( ))
( ( ))
( ) (∫ ( ) )
)
]


48 
To minimize the variance, we need to minimize the first term 
(
( )
( )
)
. Using Jensen’s 
inequality 
(
( )
( )
)
(
| ( )|
( )

(∫
| ( )|
( )
( ) )
(∫ | ( )| )
(3.22) 
which is a lower bound and does not depend on the choice of 
( )
.

Download 2,26 Mb.

Do'stlaringiz bilan baham:
1   ...   21   22   23   24   25   26   27   28   ...   58




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish