Bayesian Logistic Regression Models for Credit Scoring by Gregg Webster



Download 2,26 Mb.
Pdf ko'rish
bet13/58
Sana08.07.2022
Hajmi2,26 Mb.
#757017
1   ...   9   10   11   12   13   14   15   16   ...   58
 


23 
3.2 Bayesian Statistics 
 
3.2.1 Bayesian inference 
Bayesian inference provides a useful way to combine expert knowledge (prior belief) with 
data to arrive at some posterior belief. All Bayesian inference is conducted through the use 
of Bayes’ theorem (Press, 1989; Bernardo and Smith, 2000; Lee, 2004; Greenberg, 2008; 
Ntzoufras, 2009). 
Press (1989) explains that when one has a prior belief (called a prior distribution) before 
one observes the data, Bayes’ theorem gives a mathematical procedure for updating the 
prior belief to arrive at a posterior distribution. The derivation of Bayes’ theorem makes 
use of conditional probabilities, 
( | ) ( ) ( )
and
( | ) ( ) ( )

Therefore, 
( ) ( | ) ( ) ( | ) ( )
which leads to Bayes’ theorem: 
( | ) ( | ) ( ) ( )
.
(3.1) 
 
3.2.2 Prior density, likelihood and posterior density functions 
Following Greenberg (2008) and setting 
(a parameter or vector of parameters) and 
, we have the following for continuous or general
.
( | ) ( | ) ( ) ( )
(3.2) 
where
( ) ∫ ( | ) ( )
. Equation (3.2) is the basis of Bayesian statistics and 
econometrics. We now analyse Equation (3.2) in detail. 
( | )
, the left-hand-side of 
Equation (3.2) is the posterior density function of 
θ 
|
 y

( | )
is the density function of 
the observed data 
when the parameter value is 

( | )
is called the likelihood function 
and is a function of 
θ
once the data are known. 
( )
is called the prior density and 


24 
represents beliefs about the distribution of 
before seeing the data 
. These beliefs can 
come from the researcher’s knowledge or from other external sources. The prior 
distribution usually depends on parameters called hyperparameters. 
( )
normalizes the 
posterior distribution so that integrating Equation (3.2) with respect to 
θ
yields 1. Equation 
(3.2) can also be written as 
( | ) ( | ) ( ) 
(3.3) 
The right-hand-side of Equation (3.3) does not integrate to 1 but it has the same shape as 
( | ) 
The posterior distribution contains all the information we have about 


Download 2,26 Mb.

Do'stlaringiz bilan baham:
1   ...   9   10   11   12   13   14   15   16   ...   58




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish