Bayesian Logistic Regression Models for Credit Scoring by Gregg Webster



Download 2,26 Mb.
Pdf ko'rish
bet14/58
Sana08.07.2022
Hajmi2,26 Mb.
#757017
1   ...   10   11   12   13   14   15   16   17   ...   58
 
Bayesian updating 
Equation (3.3) can be seen as a way of updating information. Our prior knowledge is 
updated with data. Then, as new data become available the posterior distribution is updated 
using Bayes’ theorem. Greenberg (2008) explains this process: let 
be the parameter (or a 
vector of parameters) of interest and 
be the first set of data available. We have, 
( | 
) ( 
| ) ( ) 
(3.4) 
Now, suppose a new data set 
is obtained and we want the posterior distribution given 
all the available data. Thus, 
( | 
) ( 
| ) ( ) ( 

) ( 
| ) ( )
using Equation (3.1) 


) ( | 
)
because 
( | 
) ( 
| ) ( )
from Equation (3.4). 
If the data sets 
and 
are independent 


)
simplifies to 

| )
. We, therefore, 
obtain 
( | 
) ( 
| ) ( | 

(3.5) 


25 
From Equation (3.5) we can see that the posterior distribution in Equation (3.4) is now the 
prior distribution in Equation (3.5). Ntzoufras (2009) shows how Equation (3.5) can be 
generalized for a number of different data sets 
( | 
) ( 
| ) ( 
| ) ( ) 


| ) ( )

Thus, as new information becomes available, the posterior distribution becomes the prior 
distribution for the next experiment.
 
Large samples 
It is important to examine how the posterior distribution behaves in large samples. When 
there are independent trials, the likelihood function is 
( | ) ∏

| )

( | 
)
. The log-likelihood function is then 
( | ) ( | ) 
∑ ( | 
)
̅( | )
where 
̅( | ) (
) ∑ ( | 
)
is the mean log-likelihood contribution (Greenberg, 2008). 
The posterior distribution can now be written as 
( | ) ( ) ( | ) 
( ) ( ̅( | )) 
(3.6) 
Now, from Equation (3.6), we see that the posterior distribution is proportional to the 
product of the prior distribution and an exponential term raised to the power 
times a 
number. Thus, for large 
, the exponential term dominates 
( )
which does not depend on 
. Therefore, the larger the sample size, the less role the prior distribution will play in the 
posterior distribution (Greenberg, 2008). 

Download 2,26 Mb.

Do'stlaringiz bilan baham:
1   ...   10   11   12   13   14   15   16   17   ...   58




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish