86
Savollarga javob bering!
1. Sonning: a) kvadrati; b) kubi deb nimaga aytiladi?
2. Daraja, daraja ko‘rsatkichi, daraja asosi
atamalarini biror misolda
tushuntiring.
3. Natural sonning birinchi darajasi nimaga teng bo‘ladi?
Sinfda bajariladigan mashqlar
402.
Daraja ko‘rinishida yozing:
a) 8 · 8 · 8 · 8 · 8 · 8 · 8;
b) 24 · 24 · 24 · 24; d)
x
·
x
·
x
·
x
·
x
;
e) 5 · 5 · 5 · 5 · 5
f) 13 · 13 · 13 · 13;
g)
m
·
m
·
m
·
m
.
h) (
х
+ 3) · (
х
+ 3) · (
х
+ 3) · (
х
+ 3);
i) (6 –
z
) · (6 –
z
) · (6 –
z
).
403.
Hisoblang: 2
2
; 5
2
; 1
5
; 7
2
; 6
2
; 1
6
; 2
4
; 4
3
; 10
3
.
404.
Hisoblang:
a) 3
2
· 11;
b) 5 + 6
2
;
d) (3 + 5)
2
;
e) (7
3
– 3
3
) : (7 – 3);
f) (7 + 1)
3
;
g) (8 – 5)
3
: (8 – 5); h) 6
3
– 16;
i) (9
2
– 2
6
) : 17 + 4
2
.
405.
Quyidagi ifodalar qiymati tengmi?
a) 6
2
va 6 · 2;
b) 3
4
va 3 · 4;
d) 3
2
va 2
3
; e) 5
3
va 3
5
.
406.
Tenglamaning ildizini toping:
a)
х
·
х
= 36;
b)
p
·
p
= 81;
d)
y
·
y
·
y
= 64;
e)
z
·
z
·
z
·
z
·
z
= 1; f)
m
·
m
·
m
= 8;
g)
n
·
n
·
n
·
n
= 81.
Namuna:
a)
х
·
х
= 36,
х
·
х
= 6 · 6,
х
= 6.
407.
Darajaning qiymatini toping: a) 5
2
;
b) 10
2
; d) 100
3
; e) 11
3
; f) 12
3
; g) 15
3
.
408.
11 dan 20 gacha bo‘lgan sonlarning kvadratlari jadvalini tuzing.
409.
Ifodaning qiymatini toping:
a) 4
2
;
b) 23 + 3
2
;
d) (10
2
– 2
6
) : 6 + 1
10
;
e) 3
2
+ 6
2
;
f) 6
3
– 5
3
;
g) 5
2
· 2
3
;
h) (40 : 4)
5
– 100
2
;
i) (3 + 4)
2
.
410.
Sonning kvadrati va
kubi jadvallaridan foydalanib,
n
ning qiymatini toping:
a)
n
2
= 169;
b)
n
2
= 10000;
d)
n
3
= 729;
e)
n
3
= 343.
411.
Sonni 10 ning darajalari ko‘rinishida yozing: 10, 100; 1000; 1 000 000;
10 000 000.
412.
10 ning darajalaridan foydalanib, sonni xona birliklari yig‘indisi ko‘rinishida
yozing:
a) 432;
b) 328;
d) 3451;
e) 20 450;
f) 213 709.
Namuna:
a) 432
=
400
+
30
+
2
=
4
·
100
+
3
·
10
+
2
·
1
=
4
·
10
2
+ 3 · 10
1
+ 2 · 1.
413.
Hisoblang:
a) 2 · 10
3
; b) (2 · 10)
3
; d) 3 · 2
2
; e) (3 · 2)
2
; f) 12 : 2
2
; g) (12 : 2)
2
.
87
414.
Tenglikni tekshirib ko‘ring:
a) 2
3
+ 2
5
+ 2
6
+ 2
7
+ 2
8
+ 2
9
= 1000; b) 11
3
+ 12
3
+ 13
3
+ 14
3
= 8000;
d) 41
2
+ 43
2
+ 45
2
= 5555.
415.
Ifodaning qiymatini toping;
a) 15
2
+ 2
3
· 11;
f) 9
3
: (49 – 22);
b) 125 + 5
3
· 3;
g) 2
5
· (12 + 2
3
)
2
;
d) 4
3
· 13 + 3
4
· 12;
h) (13 · 11 – 43)
3
;
e) 1500 : 5
3
+ 693 : 3
2
;
i) (13 – 4 · 2)
3
: (2
2
+ 1)
2
.
416.
Quyidagi sonning kvadrati qanday raqam bilan tugaydi?
a)
122;
b)
923;
d)
225;
e)
211.
Uyda bajariladigan mashqlar
417.
Daraja ko‘rinishida yozing:
a) 3 · 3 · 3 · 3 · 3 · 3;
b) 32 · 32 · 32 · 32 · 32 · 32 · 32;
d)
d
·
d
·
d
·
d
·
d
·
d
;
e)
(
x + y
) · (
x + y
) · (
x + y
) · (
x + y
)
.
418.
Hisoblang:
a) 4
2
· 33;
b) 7 + 5
2
;
d) (4+3)
3
;
e) 7
2
+ 5
2
;
f) (5 + 7)
2
;
g) (9 – 6)
4
;
h) (40 : 8)
3
+ 24;
i) (9
2
– 5
2
) · 5 – 35.
419.
Darajaning qiymatini toping: a) 7
2
; b) 11
2
; d) 10
3
; e) 16
3
; f) 13
3
; g) 19
3
.
420.
Hisoblang:
a) 5 · 6
3
; b) (3 · 10)
2
; d) 4 · 5
2
; e) (4 · 5)
2
; f) 3 · 9 : 3
2
; g) (39 : 3)
2
.
421.
Ifodaning qiymatini toping;
a) 8
2
· 6 + 15
2
: 5
;
b) (16 – 7)
3
– 4
2
;
d) 5 · 3
3
– 16
2
: 8;
e) (3 · 2)
3
– (36 : 9)
2
; f) (4 · 6
2
: 2
3
+ 16) · 5;
g) (7
3
+ 11
2
· 5) – 512.
422.
Quyidagi sonning kubi qanday raqam bilan tugaydi?
a) 544;
b) 1111;
d) 5222;
e) 77 777.
423.
Hisoblang.
a) 3 · 10
4
+ 2 · 10
3
+ 7 · 10
2
+ 9 · 10 + 4;
b) 6 · 10
5
+ 1 · 10
3
+ 9 · 10
2
+ 5.
Qiziqarli matematikaga oid masalalar
Sonli krossvordni yeching:
Bo‘yiga: a) 564 676 : 938;
f) 527 809 + 36 895;
j) 460 015 – 36296;
h) 411 510 : 473.
Eniga:
a) 7 003 294 – 435 926;
b) 40 320 : 672;
d) 357 992 : 4 904;
e) 590 · 5 047.
a
h
b
d
e
f
i
88
19- §.
III BOBNI TAKRORLASHGA DOIR MASALALAR
19.1. Harakatga oid masalalar yechish
Oldingi darslarda harakatga doir turli masalalarga duch keldik. Bu masa-
lalarda odatda birbiri bilan bog‘liq uchta kattalik:
tezlik
, ya’ni vaqt birligi ichida
bosib o‘tilgan yo‘l,
harakat vaqti
va
bosib o‘tilgan yo‘l
qatnashadi.
1- misol.
A punktdan bir xil vaqtda qaramaqarshi yo‘nalishda ikkita yo‘lovchi
yo‘lga chiqdi. Birinchi yo‘lovchining tezligi 6 km/soat, ikkinchisiniki 4 km/soat.
2 soatdan keyin yo‘lovchilar orasidagi masofa qancha bo‘ladi?
4 ∙ 2 km
A
4 km/soat
6 km/soat
6 ∙ 2 km
Yechish.
1 usul. 2 soat davomida har bir yo‘lovchi bosib o‘tgan yo‘lni topamiz:
1- yo‘lovchi: 6 ∙ 2 = 12 (km).
2- yo‘lovchi: 4 ∙ 2 = 8 (km).
Demak, 2 soatdan keyin ular orasidagi masofa 12 + 8 = 20 (km) ga teng bo‘ladi.
2- usul. Bir soatdan keyin yo‘lovchilar orasidagi masofa 4 + 6 = 10 (km) ga teng
bo‘ladi.
Bu holatda yo‘lovchilarning bir-biridan
uzoqlashish tezligi
10 km/soatga teng
deb aytiladi.
Demak, yo‘lovchilar 2 soatdan keyin bir-biridan 2 ∙ 10 = 20 (km)
uzoqlikda
bo‘lishadi.
Javob:
20 km.
2- misol.
Ikki yo‘lovchi bir xil vaqtda ikki punktdan birbiriga qarab yo‘lga
chiqdi. Ikki punkt orasidagi masofa 27 km. Birinchi yo‘lovchining tezligi
5 km/soat, ikkinchisiniki esa 4 km/soat. Yo‘lovchilar qancha vaqtdan keyin bir
birlari bilan uchrashishadi?
27 km
5 km/soat
4 km/soat
Yechish.
Yo‘lovchilarning birbiriga
yaqinlashish tezligini
topamiz: 5 + 4 = 9 (km/soat).
Yo‘lovchilar orasidagi masofa 27 km bo‘lib, ular 1 soatda birbiriga 9 km ga yaqin
lashyapti.
Demak, yo‘lovchilar 27 : 9 = 3 (soat) dan keyin uchrashishadi.
Javob:
3 soat.
Do'stlaringiz bilan baham: