An abstract of the thesis of



Download 5,25 Mb.
Pdf ko'rish
bet19/53
Sana25.02.2022
Hajmi5,25 Mb.
#464341
1   ...   15   16   17   18   19   20   21   22   ...   53
Bog'liq
Edward Le PhD Dissertation

Strain (mm/mm)
St
re
ss (
M
Pa
)
Specimen1
Specimen2
Specimen3
Specimen5
Specimen6
Specimen7
Specimen8
Figure 3.3. OSB stress versus strain for different specimen. 
0
5
10
15
20
25
30
35
40
45
50
0
0.05
0.1
0.15
0.2
0.25
0.3
Strain (mm/mm)
St
re
ss (
M
Pa
)
Specimen1
Specimen2
Specimen3
Specimen5
Specimen6
Specimen7
Specimen8
Figure 3.4. Zoom-in of Figure 3.3. 


50 
4.
Finally, the particle locations of the compacted mats were input into a new MPM 
simulation for tensile loading (in the horizontal direction of Figure 3.5). The 
tensile simulation used fiber angles from the undulating strands and implemented 
imperfect interfaces between strands using imperfect interface methods for MPM 
(Nairn 2007A). The numerical calculations gave tensile properties as a function of 
mat compaction and interface parameter 
D
t
. The various values of D
t
spanned the 
range from perfect interface (1/
D
t
= 0) to beyond experimental results for D
t
of PF 
resin (Nairn and Le 2009).
5.
Because the mats were randomly created, all simulations were repeated for five 
randomly selected initial mat structures. Error bars of some curves show standard 
deviation or 95 percent confidence interval range of modulus results from the 
various structures.
For numerical temporal convergence, the MPM time step was set to 0.4 d/c, 
where d is the dimension of the elements in the background grid and c is the maximum 
wave speed in the strand. For wood, the maximum wave speed is in the longitudinal 
direction and for unmodified and VTC strands it is:
s
m
m
kg
GPa
E
V
/
5328
/
350
936
.
9
3
=
=
=
ρ
and 
s
m
m
kg
GPa
E
V
VTC
/
5136
/
910
24
3
=
=
=
ρ

Four material points were used for each background element or cell. For spatial 
convergence, there has to be a sufficient number of particles in the thickness direction of 
each strand. The simulations that were first tried had one cell or two particles in the 
thickness direction, but the results did not work well. They failed to resolve the glue-line. 
We then moved to 4, 6 and 8 particles. The simulations with 6 and 8 particles gave 
reasonable and similar stress, strain and strand undulation at higher levels of compaction. 
However, the simulations with 8 particles took too long to finish. Therefore, all 
simulations used 6 particles (3 cells) across the thickness of each strand. 


51 
The OSB structures were generated based on the strand length, and width, strand 
gaps, and their standard deviations. In this study (this chapter), the strand length was 150 
mm with standard deviation of 20 mm. The strand end to end spacing or gap was 15 mm 
with standard deviation of 4.95 mm. In the core plies, the strand width was 25 mm with 
standard deviation of 3 mm. The strand side-to-side spacing or width gap was 10 mm 
with standard deviation of 1 mm. Figure 3.5 shows a sample MPM simulation of 
commercial OSB at different levels of compaction, from 0 percent compaction to 40 
percent compaction. There was more undulating of strands as the level of compaction 
increased. 


52 
a)
0% compaction 
b)
10% compaction 
c)
20% compaction 
d)
40% compaction 
Figure 3.5. Sample simulation of OSB at different levels of compaction. 
3.5.2 Tension Method
The OSB structures were compacted to different levels of densification with the 
rate of 2m/sec. Archives of MPM results were saved at increments of 2% compaction. 
The output of mat structures for specific levels of compaction were then simulated by 
loading them in tension. The loading in tension was done for compactions of 0%, 10%, 
20%, 30% and 40%. The tension results were used to find OSB tensile modulus. To keep 


53 
the tension test in the elastic region, the tensile load was applied only for very small 
strain and the plastic energy was tracked during the analysis. During elastic loading, the 
total elastic energy for a composite with imperfect interfaces is (Hashin 1990): 
dS
u
D
dV
C
U
t
t
S
V
tot
2
]
[
2
1
2
1
int


+
=
σ
σ
(3.4) 
where 
U
tot
is the total energy that includes elastic strain energy (first term) and interface 
energy (second term), 

is volume,

is
 
stiffness matrix,
 
σ
is stress tensor, 
S
int
 
is 
interfacial surface area, D
t
interfacial stiffness parameter, and [u
t
] is slippage 
(displacement) along the interface
.
The MPM output was set to record both the elastic 
strain energy and the interface energy. From the output, total potential energy was used to 
calculate the modulus of elasticity. By definition, the total energy during tensile loading 
is related to effective modulus in that direction, 
eff
E
, by 
Lth
E
U
eff
tot
2
2
1
ε
=
(3.5)
where 
t
is thickness =1mm, 
h
is compressed height, and 
L
is length of specimen in mm. 
Rearranging gives 
Lth
U
E
tot
eff
2
2
ε
=
(3.6) 
The output results for interfacial energy and elastic strain energy were summed and used 
to calculate modulus. Simulations were run for various D
t
and for different levels of 
compaction. The results of elastic modulus as a function D
t
for different levels of 
compaction are disused below.
3.5.3 Verify the Model
To verify the simulation method for MOE, a test simulation was run on a 
homogenous specimen with known MOE. Figure 3.6 shows an MPM model for a block 
of material loaded in tension in the x direction. The input MOE was 11000 MPa, Poison’s 
ratio was 0.33 and density was 0.5 gram/cm
3
. To calculate MOE, the strain energy was 
recorded (here there was no interfacial energy). Figure 3.7 plots effective elastic modulus 


54 
(MOE) by Eq 3.6 versus time. At early times there are dynamic effects. But after t = 
0.021 sec, the effective modulus levels off and is close to the input MOE (11000 MPa). 
To understand the time to level off, the transit time for stress waves was calculated. The 
axial wave speed for a tensile stress wave is:

Download 5,25 Mb.

Do'stlaringiz bilan baham:
1   ...   15   16   17   18   19   20   21   22   ...   53




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish