Algoritmlarni loyihalash fanidan on savollari! Kvadratur formulalarining xatoligi? Transport masalasini yechish bosqichlari?


Funktsiya taqribiy qiymatlarini hisoblashda qatorga yoyish usuli?



Download 469,56 Kb.
bet3/9
Sana31.12.2021
Hajmi469,56 Kb.
#221427
1   2   3   4   5   6   7   8   9
Bog'liq
Algoritm ON JAVOBLAR FAYLASUF

7. Funktsiya taqribiy qiymatlarini hisoblashda qatorga yoyish usuli?

8. Fur`e qatorini trigonometrik va kompleks ko'rinishi?

9. Quydagi funktsiyaning (𝑥) = 𝑘 ∙ ,, Fur`e 𝑎0, 𝑎𝑛, 𝑏𝑛 qiymatlarini hisoblang (k-jurnal nomer)?

10. Chiziqli dasturlash masalalarining yechishda simpleks usul algoritmi va uning tahlili

Dantsig yaratgan simpleks usul har bir tenglamada bittadan ajratilgan no’malum (bazis o’zgaruvchi) qatnashishi shartiga asoslangan. Boshqacha aytganda, ChD masalasida m ta o’zaro chiziqli erkli vektorlar mavjud deb qaraladi. Umumiylikni buzmagan holda bu vektorlar birinchi m ta P1,P2,…,Pm vektorlardan iborat bo’lsin, deylik. U holda masala quyidagi ko’rinishda bo’ladi:



(5.1)

x1≥ 0, x2 ≥ 0, …, xn ≥ 0, (5.2)

Y = c1x1 + c2x2+ … + cnxn → min. (5.3)

(5.1) sistemani vektor shaklida yozib olaylik:

P1x1 + P2x2+ … + Pmxm + Pm+1xm+1+ … + Pnxn = P0, (5.4)

bu erda

, , …, , ,…, , .

P1, P2, …, Pm vektorlar sistemasi m-o’lchovli fazoda o’zaro chiziqli erkli bo’lgan birlik vektorlar sistemasidan iborat. Ular m o’lchovli fazoning bazisini tashkil qiladi. Ushbu vektorlarga mos keluvchi x1,x2,…,xm o’zgaruvchilarni «bazis o’zgaruvchilar» deb ataladi.

xm+1, xm+2,…, xn – bazis bo’lmagan (erkli) o’zgaruvchilar. Agar erkli o’zgaruvchilarga 0 qiymat bersak, bazis o’zgaruvchilar ozod hadlarga teng bo’ladi. Natijada X0 =(b1,b2,…,bm, 0,…, 0) yechim hosil bo’ladi. Bu yechim boshlang’ich joiz yechim bo’ladi. Ushbu yechimga x1P1+x2P2+…+xmPm = P0 yoyilma mos keladi. Bu yoyilmadagi P1, P2, …, Pm vektorlar o’zaro erkli bo’lganligi sababli topilgan joiz yechim bazis yechim bo’ladi.

Dantsig usulida simpleks jadval quyidagi ko’rinishda bo’ladi:



chiziqli funktsiyadagi koeffitsientlardan tashkil topgan vektor, ya’ni

Cbaz=(c1,c2,...,cm) (5.5)

Jadvalda har bir Pj vektorning ustiga xj noma’lumning chiziqli funktsiyadagi koeffitsienti cj yozilgan. m+1- qatorga esa x1,x2,…,xm bazis o’zgaruvchilardagi chiziqli funktsiyaning qiymati



(5.6)

hamda bazis yechimning optimallik mezonini baholovchi son



(i=1,…,m; j=1,…,n) (5.7)

yozilgan. Bazis o’zgaruvchilarga mos keluvchi P1, P2, …, Pm vektorlar bazis vektorlar deb belgilangan. Bu vektorlar uchun ∆j=Zj-sj=0 (j=1,…,m) bo’ladi. Agar barcha ustunlarda ∆j ≤ 0 bo’lsa, u holda X=( x1,x2,…,xm) = (b1,b2,…,bm) yechim optimal yechim bo’ladi. Bu yechimdagi chiziqli funktsiyaning qiymati Y0 ga teng bo’ladi.

shartni qanoatlantiruvchi Pk vektorni bazisga kiritib, bazisdan



(5.8)

shartni qanoatlantiruvchi Pl vektorni chiqarish kerak bo’ladi. Bu holda alk element hal qiluvchi element sifatida belgilandi. Shu element joylashgan l-qatordagi Pl vektor o’rniga u joylashgan ustundagi Pk vektor bazisga kiritiladi. Pl vektorning o’rniga Pk vektorni kiritish uchun simpleks jadval quyidagi formulalar asosida almashtiriladi.



Simpleks jadval almashgandan so’ng yana qaytadan ∆j≤0 baholar aniqlanadi. Agar barcha j lar uchun ∆j≤0 bo’lsa, optimal yechim topilgan bo’ladi. Aks holda topilgan bazis reja boshqa bazis reja bilan almashtiriladi. Bunda quyidagi teoremalarga asoslanib ish ko’riladi:




Download 469,56 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish