Академия наук республики узбекистан


Fig. 2.5. MBE setup with an isolated holder



Download 14,68 Mb.
Pdf ko'rish
bet80/93
Sana24.03.2022
Hajmi14,68 Mb.
#507269
1   ...   76   77   78   79   80   81   82   83   ...   93
Bog'liq
polikristall kremnij olishning monosilanli texnologiyasi va kremnij strukturalarini yaratishning ionli stimullashgan usullari

Fig. 2.5. MBE setup with an isolated holder 
of the substrate and a mobile ion probe 
114 


The use of ions generated by electron
-beam evaporation for control of the 
processes of heterostructure growth allows no additional source of ions in 
molecular-
beam setups. Moreover, the use of ions from electron
-beam evaporators 
for creation of multi-purpose 
protective coatings significantly expands the 
functional possibilities of electron-
beam evaporators and appropriate setups. The 
proposed method and ion probe have no analogs in the world and is fully 
compatible with equipment of 
molecular-
beam epitaxy. One of 
the advantages of the ion probe is 
simplicity of its design. 
Potentially this device can be 
used for every high-vacuum and 
ultrahigh-vacuum setups of 
growth where there are electron-
beam evaporators. 
Fig. 2.6. The dependence of of ion 
current density on position along 
moving ion probe 
In the next sections the examples 
of the observed effects and applications of the ion-stimulated methods are under 
consideration.
2.2. Delta
-doping under ion-
stimulated deposition and estimation of distribution of 
ion current density on substrate surface
 
Stibium
is a doping impurity of the 
n
-
type for IV group elements. Its 
segregation 
behavior makes it a model material for surface segregation. Two 
features of stibium is very important for the purpose of 
this work. (i) For substrate 
temperature of about 
873К
the segregation length is so large that almost all the Sb 
atoms segregate on the surface in Si epitaxy. (ii) The Si ion flow builds the Sb 
atoms from the surface into the epitaxial 
n
-
type layer. This 
method of doping is 
called as doping with secondary ions (DSI) to differ it from direct injection of 
doping impurity ions. 
For relative measurements of the ion flow some amount of sub
-monolayer 
coating of Sb adatoms (
0.
2 ×
monolayer (ML) = 
1.
356×10
14
atom

cm
-2
) was 
evaporated from the Sb source onto the 
p
-
Si
substrate surface 10-20 
Ohm
·cm 
heated up to 
873К. Then the Si layers were grown from the partially ionized beams 
without substrate rotation. The growth rate was 
0.1 nm
/s. Since the silicon layers 
were g
rown without substrate rotation, some 
non-uniformity of doping on different 
substrate parts was observed depending on their position relative to electronic 
evaporator position, as expected.
115 


As a result of resistivity measurements by the four-
probe method, 
the values 
of the mean bulk concentration of impurities were defined at appropriate points 
of the substrate surface. 
The segregation length is defined by the following formula
,
(2.
3
)
 
where 
n
s
is the surface concentration, 
n
is the bulk one. 
The change in concentration is defined by the formula
 . 
(2.
4
)
 
Integrating over thickness, we obtain
 
or 

(2.
5
)
 
From there it is possible to find the segregation length ∆
if we know 
n
(0)

The parameter 
n
(0)
we can find from the following relation 
(2.6)
where 
S
is the cross section or area, 
d
is the sample thickness, 
N
is the number of 
impurity atoms in bulk. 
N=
,
(2.
7
)
Here 
d
N
=
n
(
z
)
S
d
z
, then
(2.
8
)
Substituting (2.
8
) in (2.6) we obtain
or 
116


(2.
9
)
 
Substituting (2.
9
) in (2.
5
) we obtain
or 
(2.
10
)
From there the segregation length is 
 
(2.
11
)
 
With the values of 
and 
d = 3E
-5
cm 
we define, according to (2.
11
), the 
segregation length at appropriate points. 
For delta
-
doping with ion participation one knows the following expression 
that characterizes the concentration dependence of impurity atoms built into the 
lattice on ion floe density 
(2.1
2
)
 
where 
n
is the 
bulk concentration of doping impurities, 
R
is the growth rate, 
F
ion
is 
the ion flow, 
σ
inc
is the cross section of Sb inbuilding, 
n

is the density of Sb 
adatoms. 
From (2.1
2
) it is possible to estimate the ion flow density as
 
or the ion current density 
J
ion
=F
ion
q:
 
(2.1
3
)
 
where 
q =1,6E
-19
 
C is the elementary charge. For 
R=1E
-8
cm/sec; 
σ
inc
=0,5E
-16
cm

(for 600 eV) and for 

Download 14,68 Mb.

Do'stlaringiz bilan baham:
1   ...   76   77   78   79   80   81   82   83   ...   93




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish