97 Yangi „ Spark“ avtomobi- lining egasi yurib turgan va zaõiradagi g‘ildiraklarni rasm- da ko‘rsatilgan tartibda al- mashtirib turdi. 30 000 km yo‘l yurilgach, hamma g‘ildiraklar bir xil yedirilgani ma’lum bo‘l- di



Download 203,26 Kb.
Pdf ko'rish
Sana28.05.2022
Hajmi203,26 Kb.
#613391
Bog'liq
Страницы из Algebra. 7-sinf (2017, Sh.Alimov, O.Xolmuhamedov)



97
Yangi „ Spark“ avtomobi-
lining egasi yurib turgan va
zaõiradagi g‘ildiraklarni rasm-
da ko‘rsatilgan tartibda al-
mashtirib turdi. 30 000 km yo‘l
yurilgach, hamma g‘ildiraklar
bir xil yedirilgani ma’lum bo‘l-
di. Har bir g‘ildirak necha ki-
lometr yo‘l bosgan (18- rasm)?
Ko‘phadlarni ko‘paytiring 
(327

328):
327.
1)
+
-
-
x
y z x z
(0,3
0,3
)(
);
3)
(
)
-
+
+
m
n
p
m
1
1
1
4
4
5
20
8
;
2)
(
)
-
+
+
x
y z x y
0,5
0,5
(
);
4)
(
)(
)
-
+
-
a
a
a
2
2
0,2
0,4
1 5
10 ;
328.
1)
(
)(
)(
)
-
+
-
a b a b
a
b
2
3 ;
3)
(
)(
)(
)
+
+
-
x
x
x
2 3
1 2
1 ;
2)
(
)(
)(
)
+
-
+
a b a b
a
b
2
3 ;
4)
(
)(
)(
)
-
+
-
x
x
x
3 2
1 3
1 .
329.
Bo‘lishni bajaring:
1)
(
)
(
)
4
3
2
0,01
0,2
0,04
0,002 : 0,01 ;
a
a
a
a
a
-
+
+
2)
(
) (
)
-
-
-
+
-
5
4
3
2
2
0,05
0,08
0,09
0,01
:
0,01
;
x
x
x
x
x
3)
4)
+
-
6 3
3 4
5
3
3
6
9
3
4
5
10
5
:
.
a x
a x
ax
ax
III bobga doir sinov mashqlari — testlar
1.
Hisoblang: 
3
5
3
3 9 : 81 .
×
A) 3;
B) 
1
3
;
C) 
1
9
;
D) 
1
27
.
¹ 6
7 — Algebra, 7- sinf
18- rasm.


98
2.
 
Hisoblang: 
×
×
a b
b
a
ab
8
4 4
2 6
2 3
2
( )
( ) ( ) ( )
.
A) 
a
2
b
2
;
B) 
b
2
;
C) 
a
2
;
D) 
b
2
1
.
3.
 
Birhadning son qiymatini toping:
a b c
2 3
1
5
, bunda 
= -
= -
=
a
b
c
2,
1,
10.
A) 
-
4
5
;
B) 
4
5
;
C) -8;
D) 8.
4.
Birhadni standart shaklda yozing: 
-
ab
a b
3
4
2
2
1
2
2
.
A) 
3 3
2
;
a b
-
B) 
a b
3 3
4
3
;
C) 
-
b a
3 3
4
3
; D) 
3 3
4
.
a b
5.
 
Birhadlarni ko‘paytiring: 
-
a b c
ab c
3 2 3
2
7
9
15
14
.
A) 
a b c
3 4 4
0,3
;
B) 
-
abc
4
0,3(
) ;
C) 
-
a b c b
4 2 3 2
9
15
;
D) 
a c b
4 4 3
9
15
.
6.
Ko‘phadni uning har bir hadini standart shaklga keltirib,
soddalashtiring: 
-
+
2
2
2
3
5
6 4
4
.
b a ab
b aba ab ab
A) 43 
a
3
b
3
;
B) 43
a
2
b
3
;
C) 
-
5
a
3
b
2
;
D) 
-
5
a
2
b
3
.
7.
Ko‘phadlarning algebraik yig‘indisini toping:
+
-
-
+
+
a
b
a
b
a b
2
7
1
3
2
3
0,5
2(
).
A) 
+
3 ;
a
b
B) 
- +
3 ;
a
b
C) 
- -
3 ;
a
b
D) 
3 .
a
b
-
8.
Ko‘phadni birhadga ko‘paytiring: 
-
× -
a
x
x
1
3
4
( 3 ).
A)
-
-
2
12
3 ;
ax
x
B)
-
2
3
12 ;
x
ax
C)
+
2
3
12 ;
x
ax
D) 
2
12 .
x
ax
-
9.
Soddalashtiring: 
-
-
-
a
a b
a
a b
1
4
5 (0,4
) 4
.
A)
-
(
);
a a b
B)
+
(
);
a a b
C)
+
2
9 ;
a
ab
D)
2
3
9 .
a
ab
+


99
10.
Ko‘phadlarni ko‘paytiring: 
-
+
+
2
2
(
)(
)(
).
a b a b a
b
A) 
-
3
4
;
a
b
B) 
+
4
3
;
a
b
Ñ) 
-
3
3
;
a
b
D) 
4
4
.
a
b
-
11.
Bo‘lishni bajaring: 
-
+
3 2
2 3
2 2
2 2
(16
4
) : (4
).
a b
a b
a b
a b
A)
- +
a b
1
4
4
;
B)
+ +
4
4;
a b
C)
- +
ab
1
6
4
4;
D) 4
4
4.
a
b
-
+
12.
Ifodani soddalashtiring: 
(
) ( )
+
-
+
a
a
a
a
a a
4
2
2
1
18
21
: 3
5 2
.
A)
+
2
4
2;
a
B)
+
2
16
12;
a
C)
-
+
2
4
2;
a
D)
2
16
2.
a
+
13.
 
Ko‘phadlarni ko‘paytiring: 
+
-
+
2
2
(
2 )(
2 )(
4 ).
a
b a
b a
b
A)
4
4
16 ;
a
b
-
B) 
-
4
3
8 ;
a
b
C) 
-
3
3
8 ;
a
b
D) 
4
4
16 .
a
b
+
Hisoblang: 
(14—16):
14.
(
) (
)
-
-
5
4
0,2 :
0,1 .
A) 
-
3,2; B) 3,2;
C) 0,00032;
D) 
-
0,00032.
15.
-
- -
×
2
3
1
3
( 3)
.
A) 
-
3;
B) 3;
C) 
-
2,7;
D) 
1
9
.
16.
( ) ( )
3
2
5,2 : 1,3 .
A) 832; B) 8,32;
C) 83,2;
D) 5,2.
17.
Ko‘phadni birhadga ko‘paytiring:
-
+
× -
a
ab
b
ab
2
2
18
2
35
7
0,6
( 35 ).
A) –18
a
3
b
+ 10
a
2
b
2
– 21
ab
3
;
B) –18
a
3
b
– 10
a
2
b
2
+ 21
ab
3
;
C) 35
a
3
b
– 10
ab
– 28
ab
3
;
D) –18
a
3
– 10
ab
+ 21
a
2
b
3
.


100
18.
Hisoblang: 
( )
(
)
( )
( )
×
×
6
8
4
6
10
1,3
5,2
.
1,69
2,6
2
A) 4;
B) 2,6;
C) 1;
D) 1,69.
T a r i x i y m a ’ l u m o t l a r
Noma’lum kattaliklarni harflar bilan belgilash mashhur
yunon matematigi Diofant (III asr) asarlaridayoq uchraydi.
Koeffitsiyentlarni ham, ma’lum miqdorlarni ham harflar bi-
lan belgilashni F. Viyet (1540—1603) birinchilardan bo‘lib
qo‘llagan. Algebraik tenglamalarni umumiy holda tadqiq qi-
lish harfiy koeffitsiyentlar kiritilgandan keyingina mumkin
bo‘ldi. F. Viyet undosh bosh lotin harflari — 
B, G, D,
... bilan
koeffitsiyentlarni, unli harflari —
A, E, I,
... bilan esa no-
ma’lumlarni belgilagan. Mashhur fransuz matematigi va
faylasufi R. Dekart (1596—1650) koeffitsiyentlarni belgilash
uchun lotin alifbosining dastlabki (kichik) harflari
 a, b, c, d
, ...
dan, noma’lumlarni belgilash uchun esa alifboning oxirgi
harflari 
x, y, z
lardan foydalangan. Darajaning hozirgi
zamonaviy belgilanishi 
a
2

a
3
, ..., 
a
n
(
n
— natural son)ni ham
Dekart kiritgan (1637- yil).
„Al-jabr val muqobala“ asarining „Ko‘paytirish haqida
bob“ida al-Xorazmiy birhadlarni ko‘paytirishga, ikkihadni ik-
ki hadga ko‘paytirishga hamda soddalashtirishga doir misollar-
ni qaraydi. Al-Xorazmiy misollaridan ba’zilarini keltiramiz:
1)
(10
) ;
x x
-
2)
(10
)(10
);
x
x
+
+
3)
(10
)(10
);
x
x
-
-
4)
(10
)(10
);
x
x
-
+
5)
æ
ö æ
ö
+
×
-
ç
÷ ç
÷
è
ø è
ø
1
2
2
10
5
;
x
x
&

Download 203,26 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish