1. Аниқ интегралларни ҳисоблаш. Ньютон- Лейбниц форму-ласи
2. Аниқ интегралнинг хоссалари. Ўрта қиймат ҳақидаги теоремалар
3. Аниқ интегрални тақрибий ҳисоблаш
4.Аниқ интеграл ёрдамида функция лимитларини ҳамда Функциянинг ўрта қийматини ҳисоблаш
Aniq integral va uning xossalari. Aniq integralni hisoblash usullari
kesmada f(x) funksiya aniqlangan bo’lsin. kesmani nuqtalar bilan n ta bo’lakka ajratamiz. Har bir kesmadan ixtiyoriy nuqta olib
yig’indini tuzamiz. Bunda
ko’rinishidagi yig’indi integral yig’indi deyiladi. Uning max dagi limiti mavjud va chekli bo’lsa, unga f(x) funksiyaning a dan b gacha aniq integrali deyiladi va u
ko’rinishida yoziladi.
Bu holda f(x) funksiya kesmada integrallanuvchi deyiladi. f(x) funksiyaning integrallanuvchi bo’lishi uchun u kesmada uzluksiz bo’lishi yoki chekli sondagi uzilishlarga ega bo’lishi kifoyadir.
Aniq integral quyidagi bir qator xossalarga ega:
1. ;
., agar bo’lsa;
;
. Agar kesmada va integrallanuvchi bo’lsa, u holda
tengsizlik o’rinli bo’ladi;
6. Agar kesmada va funksiyalar integrallanuvchi hamda bo’lsa, u holda ularning aniq integrallari uchun tengsizlik o’rinli bo’ladi.
Agar va f(x) funksiya , kesmalarda integrallanuvchi bo’lsa, unda kesmada ham integrallanuvchi va tenglik o’rinli bo’ladi.
Agar kesmada (a tengsizlik o’rinli bo’ladi;
Agar funksiya kesmada integrallanuvchi bo’lsa, u holda f(x) funksiya ham bu kesmada integrallanuvchi va quyidagi tengsizlik o’rinli bo’ladi: 10. Agar f(x) funksiya kesmada uzluksiz bo’lsa, u holda bu kesmada shunday 𝜉 nuqta mavjud bo’ladiki, unda
tenglik o’rinli bo’ladi.
Agar F(x) uzluksiz f(x) funksiyaning biror boshlang’ich funksiyasi bo’lsa, u holda
tenglik o’rinli bo’ladi. Bu tenglik aniq integralni hisoblashning Nyuton-Leybnis formulasi deyiladi.
Ba’zi aniq integrallarni hisoblashda bo’laklab integrallash formulasi deb ataluvchi
formuladan foydalaniladi.
Berilgan uzluksiz funkisiyadan kesma bo’yicha olingan
aniq integiralni ba’zi hollarda biror differensiallanuvchi funksiya orqali “eski” x o’zgaruvchidan “yangi” t o’zgaruchiga o’tish usulida foydalanib hisoblash mumkin bo’ladi. Bunda quyidagi shartlar qo’yiladi:
1. ( 2. (t) vafunksiyalar t[] kesmada uzluksiz:
3. [ murakkab funksiya [ kesmada aniqlangan va uzluksiz.
Bu shartlarda ushbu formula o’rinli bo’ladi:
Bu formula aniq integralda o’zgaruvchini almashtirish formulasi deyiladi.