3-ma’ruza. Chiziqli algebraga kirish. Vektor va matrisalar bilan ishlash. Reja



Download 1,84 Mb.
bet4/20
Sana19.11.2022
Hajmi1,84 Mb.
#868790
1   2   3   4   5   6   7   8   9   ...   20
Bog'liq
3-mavzu (Vek., matr., Ch.algeb)

2.1. Vektorni songa ko’paytirish
5-ta’rif. vektorning songa ko’paytmasi deb: 1) va 2) bo’lganda bo’lganda shartlarni qanoatlantiruvchi vektorga aytiladi, bunda -vektorlarning yo’nalishdoshligini, - vektorlar qarama-qarshi yo’nalganligini anglatadi.
Vektorning songa ko’paytmasi quyidagi xossalarga ega:

Bu xossalarning isbotlari planimetriyadagi shu kabi xossalarning isbotiga o’xshashdir.
tenglikni va vektorlar kollinearligining zaruriy va yetarli sharti sifatida qarash mumkin.

3. Fazodagi bazis haqida


Vektorning koordinatalari. Biz tekislikdagi bazisni kollinear bo’lmagan vektorlar jufti shaklida kiritgan edik. Unda har qanday uchinchi vektorni bazisning ikkita vektori orqali ifodalash mumkin bo’lgan edi.
Fazodagi vektorlarning yuqoridagiga o’xshash xossasini qarab chiqamiz. Fazoda uchta komplanar bo’lmagan vektorlar berilgan bo’lsin. Bunda ixtiyoriy to’rtinchi vektorni va vektorlar orqali ifodalash mumkinligini isbotlaymiz.
, vektorlarni umumiy nuqtaga keltiramiz (4.7-rasm). vektorlar komplanar bo’lmaganligidan vektorlar juftining har biri tekislikni aniqlaydi. uch orqali mos ravishda , va tekisliklarga parallel tekisliklar o’tkazamiz. Natijada prizmani hosil qilamiz. Vektorlarni qo’shish qoidasi bo’yicha

deb yozish mumkin. bo’lganligidan, ikki vektorning kollinearlik shartiga ko’ra, deb yozish mumkin. Shunga o’xshash, va munosabatlardan,
va
bo’lishi kelib chiqadi. Bu ifodalarni o’rniga keltirib qo’yib, vektor uchun
(1)
tenglikni hosil qilamiz.
(1) tenglik vektorning uchta komplanar bo’lmagan vektorlar bo’yicha yoyilmasi deyiladi. Bu holda vektorlar fazoda bazis hosil qiladi, deyishadi, koeffisiyentlar esa, vektorning bu bazisdagi koordinatalari deyiladi va u ( ) kabi yoziladi. (1) yoyilmadagi qo’shiluvchilar vektorning (1) yoyilmasini tashkil etuvchilar deyiladi.
Berilgan bazisda vektor yoyilmasining yagonaligini isbotlaymiz. vektorning (1) yoyilmasidan boshqa, yana koeffisiyentlari boshqa bo’lgan ,
(2)
yoyilmasi ham mumkin bo’lsin.
Modomiki, yoyilmalar har xil ekan, ularning koeffisiyentlari uchun

shartlardan hyech bo’lmaganda bittasi bajariladi. (1) tenglikdan (2) tenglikni ayirib,
(3)
munosabatni olamiz. (3) dan bo’lganda vektorni va vektorlar orqali quyidagicha ifodalash mumkin:
= (4)
Bunday yoyilma esa, faqat , , vektorlar komplanar bo’lganda mumkin bo’ladi, bu esa, , , vektorlarning komplanar emasligi shartiga ziddir. Demak, (3) tenglik, faqat va bo’lgandagina o’rinli bo’ladi. (1) yoyilmaning yagonaligi isbotlandi.



Download 1,84 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   20




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish