10
1
10
1
2
1
390
13
0
39
1
39
6
39
10
0
39
8
39
9
39
2
0
39
12
39
6
39
3
1
0
0
0
39
42
1
0
0
39
24
0
1
0
39
81
0
0
1
1
1
5
39
13
0
39
1
39
6
39
10
0
39
8
39
9
39
2
0
39
12
39
6
39
3
10
0
0
0
39
42
1
0
0
39
24
0
1
0
39
81
0
0
1
390
39
390
26
390
39
390
13
390
42
390
38
390
18
390
86
390
24
390
96
390
66
390
12
390
81
390
66
390
21
390
57
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
;
Bundan
39
26
39
13
42
38
18
86
24
96
66
12
81
66
21
57
390
1
1
A
◄
3.0-misol.
7
3
3
,
2
3
4
2
,
3
5
z
y
x
z
y
x
z
y
x
chiziqli algebraik tenglamalar
sistemasi birgalikda
ekanligini tekshiring. Agar birgalikda bo‘lsa, uni Kramer formulalari bo‘yicha
yeching.
Yechilishi: ►
Teorema (Kroneker-Kapelli).
m
n
mn
m
m
n
n
n
n
b
х
a
х
а
х
a
b
х
а
х
а
х
а
b
х
а
х
а
х
а
...
...
...
...
...
...
,
...
,
...
2
2
1
1
2
2
2
22
1
21
1
1
2
12
1
11
chiziqli tenglamalar sistemasi birgalikda bo‘lishi
uchun sistemaning
A
matritsasi
bilan
B
kengaytirilgan matritsasining rangi teng bo‘lishi zarur va yetarli.
Teoremadan kelib chiqadigan natijalar:
1)
rangA
rangB
bo‘lsa, tenglamalar
sistemasi birgalikda emas;
2)
rangA
rangB
r
n
bo‘lsa, tenglamalar
sistemasi yagona yechimga ega;
3)
rangA
rang B
r
n
bo‘lsa, tenglamalar sistemasi cheksiz ko‘p yechimga ega.
Berilgan chiziqli algebraik tenglamalar sistemasi
birgalikda ekanligini
tekshiramiz.
7
3
3
2
3
4
2
3
5
z
y
x
z
y
x
z
y
x
3
1
3
3
4
2
1
5
1
A
7
-
2
3
3
1
3
3
4
2
1
5
1
B
;
B
A
r
r
.
Sistema birgalikda va yagona yechimga ega ekan.
Kramer formulalari bo‘yicha yechamiz:
16
3
1
3
3
4
2
1
5
1
;
64
3
1
7
3
4
2
1
5
3
x
.
4
16
64
x
x
;
16
3
7
3
3
2
2
1
3
1
y
.
1
16
16
y
y
;
32
7
1
3
2
4
2
3
5
1
z
.
2
16
32
z
z
Yechim
: (-4; 1; -2)
◄
4.0-misol.
4
2
3
2
2
y
x
y
x
y
x
tenglamalar sistemasini eng kichik kvadratlar
usulida taqribiy yechimini toping.
Yechilishi:
►
B
AX
ning aniq yechimi bo‘lmasa, u holda tenglamaning har
ikki tomonini
T
A
ga ko‘paytirib,
B
A
AX
A
T
T
tenglamani hosil qilamiz. Uni
“eng
kichik kvadratlar usuli”
da yechib, taqribiy yechimni olish mumkin. Bunda
A
A
T
- ko‘paytmadan hosil bo‘lgan matritsa kvadrat matritsa bo‘ladi, shundan
foydalanamiz:
B
A
A
A
X
T
T
1
.
4
2
3
2
2
y
x
y
x
y
x
4
3
2
2
1
1
1
2
1
y
x
;
4
3
2
,
,
2
1
1
1
2
1
B
y
x
X
A
;
2
1
1
1
2
1
T
A
6
5
5
6
2
1
1
1
2
1
2
1
1
1
2
1
A
A
T
Endi
1
A
A
T
ni hisoblaymiz. Demak,
6
5
5
6
11
1
)
(
1
1
A
A
A
A
T
T
11
18
11
7
18
7
11
1
13
12
6
5
5
6
11
1
4
3
2
2
1
1
1
2
1
6
5
5
6
11
1
1
B
A
A
A
X
T
T
Bizning taqribiy yechimimiz
11
18
11
7
y
x
ga teng chiqdi.
B
AX
tenglamada
E
B
AX
2
deb belgilaymiz. Eng kichik kvadratlar
2
B
AX
E
usuli
X
yechimni imkon qadar
kichiklashtiradi, ya’ni
2
3
2
2
2
1
e
e
e
E
har bir tenglamadagi xatoning kvadratlari yg‘indisi minimal bo‘ladi.
Shunday qilib,
4
2
3
2
2
y
x
y
x
y
x
tenglamalar sistemasining eng yaxshi taqribiy yechimi
11
18
11
7
y
x
yoki
64
,
1
64
,
0
y
x
ekan ◄
1 - tоpshiriq.
Matritsa rangini topishga doir:
a)
Ta’rifga ko‘ra matritsa rangini toping;
b) O‘rab turuvchi minorlar usulida matritsa rangini aniqlang;
v) Elementar almashtirishlar yordamida matritsa rangini toping.
1.0.
1
2
1
3
3
1
0 7
2
3
-1
4
A
1.1.
14
-
5
3
2
4
6
0
1
5
2
-
6
3
0
2
-
1
1
. 1.2.
1
6
0
2
4
3
3
1
-
2
0
2
-
0
9
-
3
6
1
3
1
-
0
2
.