A={ a,b,c}, B={1,2,3}, C={α,β,γ} to‘plamlarda aniqlangan
R 1 A B vа
1.6.1.
|
R1={(a,3),(b,2),(c,1),(c,2)},
|
1.6.15.
|
R1={(a,3),(a,2),(a,1)},
|
|
R2={(1,β),(2,α),(3,β), (3,γ)}
|
|
R2={(2,γ),(1,α),(1,β)}
|
1.6.2.
|
R1={(a,1),(a,3),(c,1),(c,3)},
R2={(2,α),(2,γ),(1,β), (3,α)}
|
1.6.16.
|
R1={(a,3),(a,2),(a,1)},
R2={(1,γ),(3,α),(1,β)}
|
1.6.3.
|
R1={(a,2),(b,1),(c,3)},
R2={(1,β),(2,β), (3,α)}
|
1.6.17.
|
R1={(a,3),(a,2),(a,1)},
R2={(1,γ),(1,α),(3,β)}
|
1.6.4.
|
R1={(a,3),(b,2),(c,1)},
R2={(1,γ),(2,α),(3,α)}
|
1.6.18.
|
R1={(a,3),(a,2),(a,1)},
R2={(3,γ),(2,α),(2,β)}
|
1.6.5.
|
R1={(a,2),(b,3),(c,1)},
R2={(1,γ),(2,β),(3,α)}
|
1.6.19.
|
R1={(a,3),(a,2),(a,1)},
R2={(2,γ),(3,α),(2,β)}
|
1.6.6.
|
R1={(b,3),(b,2),(b,1)},
R2={(2,γ),(2,α),(2,β)}
|
1.6.20.
|
R1={(a,3),(a,2),(a,1)},
R2={(2,γ),(2,α),(3,β)}
|
1.6.7.
|
R1={(a,1),(a,2),(a,3)},
R2={(3,γ),(3,α),(3,β)}
|
1.6.21.
|
R1={(b,3),(b,2),(b,1)},
R2={(3,β),(1,α),(1,β)}
|
1.6.8.
|
R1={(c,3),(c,2),(c,1)},
R2={(1,γ),(1,α),(2,β)}
|
1.6.22.
|
R1={(b,3),(b,2),(b,1)},
R2={(3,β),(1,α),(1,γ)}
|
1.6.9.
|
R1={(c,3),(c,2),(c,1)},
R2={(2,γ),(2,α),(2,β)}
|
1.6.23.
|
R1={(b,3),(b,2),(b,1)},
R2={(3,β),(1,α),(1,β)}
|
1.6.10.
|
R1={(c,3),(c,2),(c,1)},
R2={(3,γ),(3,α),(3,β)}
|
1.6.24.
|
R1={(b,3),(b,2),(b,1)},
R2={(3,β),(2,α),(2,β)}
|
1.6.11.
|
R1={(a,3),(a,2),(a,1)},
R2={(1,γ),(1,α),(1,β)}
|
1.6.25.
|
R1={(b,3),(b,2),(b,1)},
R2={(3,β),(2,α),(2,γ)}
|
1.6.12.
|
R1={(a,3),(a,2),(a,1)},
R2={(2,γ),(2,α),(2,β)}
|
1.6.26.
|
R1={(b,3),(b,2),(b,1)},
R2={(2,β),(2,γ),(3,α)}
|
1.6.13.
|
R1={(b,3),(b,2),(b,1)},
R2={(1,γ),(1,α),(1,β)}
|
1.6.27.
|
R1={(b,3),(b,2),(b,1)},
R2={(3,β),(3,α),(2,γ)}
|
1.6.14.
|
R1={(b,3),(b,2),(b,1)},
R2={(3,γ),(3,α),(3,β)}
|
1.6.28.
|
R1={(b,3),(b,2),(b,1)},
R2={(1,β),(3,α),(3,γ)}
|
|
|
1.6.29.
|
R1={(b,3),(b,2),(b,1)},
R2={(3,β),(3,γ),(2,β)}
| 1.3. Munosabatlar kompozitsiyasiga doir topshiriq(na’muna)
A={a,b,c}, B={1,2,3}, C={α,β,γ} to‘plamlarda aniqlangan
R 1 A B vа
R 2 B C
topilsin:
binаr munosаbаtlаrning kopаytmаsi yoki kompozitsiyasi
1.6.0.
|
R1={(a,2),(a,3),(b,1),(c,2)}, R2={(1,α),(2,α),(2,β), (3,γ)}
| 1.3. Topshiriqning bajarilishi bo’yicha na’muna
1.6.0.
R 1 A B vа
R 2 B C
binаr munosаbаtlаrning kopаytmаsi yoki
kompozitsiyasi,
R1 ∘ R 2 {( x, y): xA, yC ва zB topiladik i
kabi aniqlanadi, shunga ko‘ra:
(x, z) R 1
va (z, y) R 2}
R1 ∘ R 2 {(a,2);(a,3);(b,1);(c,2)} {(1,α);(2,α);(2,β);(3,γ)}=
={(a,β);(a,α);(a,γ);(b,α);(c, α);(c, β)}
2-usul. R1 va R2 munosabatlarni quyidagicha chizmalarda ifodalab olamiz:
A to‘plam elementlarini B to‘plam elementlari orqali C to‘plam elementlari bilan bog‘lash mumkin bo‘lgan yo‘llarning uchlaridan iborat bo‘lgan to‘plamga R1 va R2 munosabatlarning kompozitsiyasini tashkil qiladi.
Do'stlaringiz bilan baham: |