2 . Roll` teoremasi. Agar funksiya segmentda uzluksiz, uning ichki nuqtalarida differensiallanuvchi va segmentning oхirlarida nolga aylansa, ya`ni bo`lsa, u holda hosila bu segmentning juda bo`lmaganda ichki bir nuqtasida nolga teng bo`ladi.
Isboti. Bu funksiya segmentda uzluksiz bo`lgani uchun u o`zining eng katta va eng kichik qiymatiga erishadi.
Agar bo`lsa, funksiya segmentda o`zgarmas va demak, segmentning iхtiyoriy nuqtasida uning hosilasi .
Endi bo`lsin, u holda u sonlardan biri, masalan, shuning uchun, agar eng katta qiymat ga nuqtada erishilsa: u holda nuqta segmentning ichki nuqtasi bo`lishi, intervalga (chunki segmentning oхirlarida) tegishli bo`lishi kerak. Demak, Ferma teoremasiga ko`ra .
Roll` teoremasining geometrik ma`nosini quyidagicha tushuntirish mumkin: Agar segmentda uzluksiz va uning ichida differensiallanuvchi funksiyaning grafigi va nuqtalarda kesib o`tsa, u holda nuqtalarning o`rtasida hech bo`lmaganda bitta , nuqta topiladiki, bunda funksiya grafigiga o`tkazilgan urinma abssissalar o`qiga parallel bo`ladi.
Do'stlaringiz bilan baham: |