1. Dasturiy ta’minot va uning turlari


teorema (Boltsman–Koshi teoremasi)



Download 14,99 Mb.
bet83/89
Sana22.07.2022
Hajmi14,99 Mb.
#838566
1   ...   79   80   81   82   83   84   85   86   ...   89
Bog'liq
Gost 2022

teorema (Boltsman–Koshi teoremasi). Agar f(x) funksiya [a,b] kesmaning chetlarida har xil ishorali qiymatlarga ega bo‘lsa, u holda bu kesmaning ichida (1.1) tenglama hech bo‘lmaganda bitta ildizga ega. Agar (a,b) intervalda f(x) hosila mavjud bo‘lib, u o‘z ishorasini almashtirmasa, u holda bu ildiz yagona.

teorema. f(x) funksiya [a, b] kesmada analitik funksiya bo‘lsin. Agar [a, b] kesmaning chetki nuqtalarida f(x) funksiya har xil ishorali qiymatlarini qabul qilsa, u vaqtda (1.1) tenglamaning a va b nuqtalar orasida yotadigan ildizlarning soni toqdir. Agar f(x) funksiya [a, b] kes- maning chetki nuqtalarida bir xil ishorali qiymatlarni qabul qilsa, u vaq- tda (1.1) tenglamaning ildizlari yoki [a, b] kesmada yotmaydi yoki ularn- ing soni juftdir (karraliligini hisobga olgan holda). Transendent tenglama- lar ildizlarining soni ixtiyoriy bo‘lishi mumkin.
335.Aniq integralni taqribiy hisoblashning to’g’ri to’rtburchaklar formulasi va ining xatoligi.
To‘g‘ri to‘rtburchaklar formulasi.Bu formulani keltirib chiqarish uchun dastlab а,b kesmani uzunligi bir xil va х=(b–a)/n bo‘lgan n ta [xi–1, xi] kesmachalarga (i=1, 2, ∙∙∙, n) ajratamiz. Bunda xi bo‘linish nuqtalari

formula bilan topiladi.So‘ngra integral ostidagi f(x) funksiyaning xi bo‘linish nuqtalaridagi f(xi) (i=1, 2, ∙∙∙, n) qiymatlarini hisoblaymiz. Bu qiymatlar va [xi–1, xi] kesmachalar uzunligi х bo‘yicha
Sn(f)= f(x1)х+ f(x2)х + f(x3)х+ ∙∙∙ + f(xn)х
integral yig‘indini hosil qilamiz. Ta’rifga asosan I aniq integral Sn(f) integral yig‘indilar ketma – ketligining n→∞ bo‘lgandagi limitiga teng. Shu sababli, n katta son bo‘lganda, I ≈ Sn(f) deb olish mumkin. Natijada ushbu taqribiy formulaga ega bo‘lamiz:
. (9)
Agar [a,b] kesmada f(x)>0 deb olsak, unda (9) taqribiy tenglikning o‘ng
tomonidagi yig‘indi asoslari bir xil х uzunlikli [xi–1, xi] kesmachalardan, balandliklari esa hi= f(xi) (i=1, 2, ∙∙∙, n) bo‘lgan to‘g‘ri to‘rtburchaklardan tuzilgan pog‘onasimon geometrik shaklning (74-rasmga qarang) yuzini ifodalaydi. Chap tomondagi aniq integral qiymati esa aABb egri chiziqli trapetsiya yuziga teng.

74-rasm

3-TA’RIF: Aniq integral uchun (9) taqribiy tenglik to‘g‘ri to‘rtburchaklar formulasi deyiladi.
To‘g‘ri to‘rtburchaklar formulasining xatoligi
(10) formula bilan baholanadi.

Download 14,99 Mb.

Do'stlaringiz bilan baham:
1   ...   79   80   81   82   83   84   85   86   ...   89




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish