4. Sоddalashtiring.
5. Tenglamani yeching.
= 2
= 28
= k
(x+2)(x+4)(x-6)(x-8)=2925
(x2-19882)2 – 7952x -1 = 0
x1 va x2 x2+px+q=0 tenglamaning ildizlari bo’lsin, x1+1 va x2+1 x2-p2x+pq=0 tenglamaning ildizlari bo’lsa, p va q ni toping.
Ildizlari x2+55x-45=0 tenglama ildizlarining kvadratiga teskari bo’lgan kvadrat tenglama tuzing.
a ning qanday qiymatida (x2-a2)2 =x tenglama manfiy ildizga ega.
x4- 5x3 -4x2-7X+4=0 tenglamaning manfiy ildizlari nechta.
Agar 100+10a+b<0 ekani ma’lum bo’lsa x2+ax+b =0 tenglama nechta yechimga ega?
tenglamani yeching.
tenglamani yeching.
tenglamani yeching.
tenglamani yeching.
Tenglamani yeching.
Tenglamalar sistemani qanoatlantiradigan a, b, c butun sonlarni toping.
6. Modulli funksiyalarni grafiklarini yasang.
|y| = x – 2
y = |x+2| + |x - 1| +|x - 3|
y = |x+2| + |x - 2|
|y| + |x| = 2
y = ||x| - 2|
y = |||x| - 2| - 2|
y = ||x| - 2|
y = |||x| - 2| - 2|
7. Qaytma tenglamani yeching.
3x4-2x3+x2-6x+27=0
x4+3x3-13x2-6x+8=0
x4+2x3+3x2+x+1=0
3x4-2x3+x2-6x+27=0
2x4+3x3-13x2-6x+8=0
4x4+2x3+3x2+x+1=0
8. Tengsizliklarni yeching.
(x-2) (x-5) (x-12)>0
(x+7) (x+1) (x-4)<0
x(x+1) (x+5) (x-8)>0
(x2-16) (x+17)>0
x(x+1) (x+5) (x-8)>0
x(2x2+1) (x-4)>0
(x-1)2 (x-2)3 (x-3)4 (x-4)5 >0
(x+2)2 (x-1)3 (x-2)7 < 0
(x-1)3 (x-2)4 (x-5)5 (x-6)6 >0
(x2+1,5x) (x2-36) <0
x3 -0,01 >0
(x-1)2 (x-24) < 0
(x2+17) (x-6) (x+2) <0
(13-9x)3(11-8x)4(5-x)<0
(3-4x)2(4-7x)3(5+x)>0
(2-3x)3(4-8x)(15-x)<0
9. Pragresssiyalar.
Arifmetik progressiyada am+n=A, am-n=B ekani ma’lum. am va an ni toping.
(x+1)+ (x+4)+ (x+7)+ (x+10)+…+ (x+28)=155 tenglamani yeching.
Birinchi n ta hadi yig’indisi 2n2-3n gat eng bo’lgan arifmetik progressiyani toping.
m va n musbat sonlar orasida joylashgan va maxraji 3 ga teng bo’lgan barcha qisqarmas kasrlar yig’indisini toping.
Agar arifmetik progressiyada Sm=Sn bo’lsa, Sm+n =0 ekanini isbotlang.
S= 1+2+22+23+ … +55n (n – natural son) yig’indini 31 ga karrali ekanini ko’rsating.
Agar a, b, c, d sonlar geometric progressiya tashkil qilsa, u holda
(a-c)2+(b-c)2+(b-d)2=(a-d)2 bo’lishini isbotlang.
8. Geometrik progressiyada bm+n=A, bm-n=B ekani ma’lum. bm va bn ni toping.
2n ta haddan iborat geometrik progressiyada juft o’rinda turgan n ta had yig’indisining toq o’rinda turgan n ta had yig’indisiga nisbati progressiya maxrajiga tengligini isbotlang.
Agar a1, a2, a3, a4,……, a2n - ayirmasi d ga teng bo’lgan arifmetik progressiya bo’lsa, yig’idini toping.
12 - 32 + 52 - 72 + ….+972 - 992 =
7+77+777+7777+ ……+ 7777….7 = (oxirgi qoshiluvchida 7 dan n ta)
S=1+2x+3x2+ …. + nxn-1
ni hisoblang.
S=1+2x+3x2+ …. + nxn-1
ni hisoblang.
Agar a1, a2, a3, a4,……, a2n - ayirmasi d ga teng bo’lgan arifmetik progressiya bo’lsa, yig’idini toping.
Irratsional tengsizlikni yeching.
1 -
0>0>0>0>0>0>
Do'stlaringiz bilan baham: |