Ustoz: Abdurahmonov. Q


Valent, o’tkazuvchanlik va taqiqlangan energetik sathlar



Download 25.47 Kb.
bet2/2
Sana17.05.2021
Hajmi25.47 Kb.
1   2
Valent, o’tkazuvchanlik va taqiqlangan energetik sathlar 
Zamonaviy elektronika qurilmalari yarim o‘tkazgichli materiallardan tayyorlanadi. Yarim o‘tkazichlar kristall, amorf va suyuq bo‘ladi. Yarim o‘tkazgichli texnikada asosan kristall yarim o‘tkazgichlar (1010 asosiy modda tarkibida bir atomdan ortiq bo‘lmagan kiritma monokristallari) qo‘llaniladi. Odatda yarim o‘tkazgichlarga solishtirma elektr o‘tkazuvchanligi metallar va dielektriklar oralig‘ida bo‘lgan yarim o‘tkazgichlar kiradi (ularning nomi ham shundan kelib chiqadi). Xona temperaturasida ularning solishtirma elektr o‘tkazuvchanligi 10-8dan 105gacha Sm/m (metrga Simens)ni tashkil etadi. Metallarda 106-108 Sm/m, dielektriklarda esa 10-8-10-13 Sm/m. Yarim o‘tkazgichlarning asosiy xususiyati shundaki, temperatura ortgan sari ularning solishtirma elektr o‘tkazuchanligi ham ortib boradi, metallarda esa kamayadi. Yarim o‘tkazgichlarning elektr o‘tkazuvchanligi yorug‘lik bilan nurlantirish va hatto juda kichik kiritma miqdoriga bog‘liq. Yarim o‘tkazgichlarning xossalari qattiq jism zona nazariyasi bilan tushuntiriladi.

Har bir qattiq jism ko‘p sonli bir-biri bilan kuchli o‘zaro ta’sirlashayotgan atomlardan tarkib topgan. Shu sababli bir bo‘lak qattiq jism tarkibidagi atomlar majmuasi yagona tuzilma deb qaraladi. Qattiq jismda atomlar bog‘liqligi atomning tashqi qobig‘idagi elektronlarni juft bo‘lib birlashishlari (valent elektronlar) natijasida yuzaga keladi. Bunday bog‘lanish kovalent boglanish deb ataladi.



Atomdagi biror elektron kabi valent elektron energiyasi W ham diskret yoki kvantlangan bo‘ladi, ya’ni elektron energetik sath deb ataluvchi biror ruxsat etilgan energiya qiymatiga ega bo‘ladi. Energetik sathlar elektronlar uchun ta’qiqlangan energiyalar bilan ajratilgan. Ular ta’qiqlangan zonalar deb ataladi. Qattiq jismlarda qo‘shni elektronlar bir-biriga juda yaqin joylashganligi uchun, energetik sathlarni siljishi va ajralishiga olib keladi va natijada ruxsat etilgan energetik zonalar yuzaga keladi. Energetik zonada ruxsat etilgan sathlar soni kristaldagi atomlar soniga teng bo‘ladi. Ruxsat etilgan zonalar kengligi odatda bir necha elektron – voltga teng (elektron – volt – bu 1V ga teng bo‘lgan potensiallar farqini yengib o‘tgan elektronning olgan energiyasi). Ruxsat etilgan zonadagi minimal energiya sathi tubi (Wc), maksimal energiya esa shipi (Wv) deb ataladi. 

Metallar (yun. metalleuo — qaziyman, yerdan qazib olaman) — oddiy sharoitda yuqori elektr oʻtkazuvchanligi, issiq oʻtkazuvchanligi, elektr oʻtkazuvchanligi, elektr magnit toʻlqinlarini yaxshi qaytarishi, plastikligi kabi oʻziga xos xususiyatlarga ega boʻlgan oddiy moddalar. Metall qattiq holatda kristall tuzilishda boʻladi. Bugʻ holatida esa bir atomlidir. Metallning oksidlari suv bilan birikkanida koʻpincha gidroksidlar (asoslar) ga aylanadi. Metall elektron tuzilishi tu-fayligina yuqorida aytib oʻtilgan oʻziga xos xususiyatlarga ega. Metall atomlari tashqi (valent) elektronlarini osonlikcha beradi. Metallning kristall panjarasida hamma elektron oʻz atomi bilan birikkan boʻlavermaydi. Ulardan baʼzilari harakatlanadi.

Kimyoviy xossalari. D. I. Mendeleyevning davriy sistemasidagi 109 kimyoviy elementning 87 tasi M., 22 tasi metallmasdir. Barcha Metallarni "oddiy metallar", "oraliq metallar", "lantanoid va aktinoidlar" tashkil qiladi. Davriy sistemada asosiy guruhchalardagi metallar oddiy metallar (s- va r-elementlar), qoʻshimcha guruhchaga joylashgan metallar — oraliq metallar yoki (d- va f- elementlar) nomi bilan yuritiladi. Oddiy moddalarni metallar va metallmaslar deb shartli ravishda ikki guruhga boʻlinadi. Mac, Ge va Sb qaysi turkumga kirishi toʻgʻrisida yagona fikr mavjud emas. Lekin germaniyni yarimoʻtkazgich xossalariga ega boʻlgani uchun metallmas, surmani esa fizik xossalariga koʻra yarim metall boʻlsada, Metall deb hisoblash toʻgʻriroqdir. Qalayning metall (Z-Sn) va yarim-oʻtkazgich (a-Sn) modifikatsiyalari bor. Germaniy, kremniy, fosfor va baʼzi metallmaslarning yuqori bosim ostida Metall kabi oʻtkazuvchi modifikatsiyalari mavjudligi aniqlangan. Bundan tashqari, yuqori bosim ostida barcha moddalar ham metallik xossalarini namoyon qilishi mumkin. Shu sababli, u yoki bu elementni Metallga yoki metallmaslarga taallukli ekanligini belgilashda uning nafaqat fizik xossalarini, balki kimyoviy xossalarini ham hisobga olish zarur. Metall kimyoviy reaksiyalarga elektronlar donorlari sifatida kirishadi, birikmalarda yoki eritmalarda musbat zaryadli ionlar hosil qiladi. Metallning elektromanfiyligi metallmaslarning elektromanfiyligidan pastroq boʻladi. Koʻpchilik Metall vodorod, galogenlar, xalkogenlar bilan faol reaksiyaga kirishadi. Ishqoriy va ishqoriy yer metallar suv bilan oddiy temperaturalarda, rux va temir kabi Metallesa suv bugʻi bilan yuqori temperaturalarda reaksiyaga kirishadi. Azot bilan qator Metallmas, litiy xona temperaturasida, magniy, sirkoniy, gafniy, titan esa qizdirilganda reaksiyaga kirishadi. Metall oʻziga qaraganda aslroq metallni oʻsha metall tuzi eritmasidan siqib chiqaradi. Bu xossalarga asoslanib, barcha Metall quyidagicha joylashadi (Beketov qatori): Li, K, Sa, Na, Mg, Al, Mn, Zn, Fe, Cd, Co, Ni, Sn, Pb, H2, Cu, Ag. Hg, Au. Fizik xossalari. Koʻpchilik Metall oddiy kub va geksagonal kristall tuzilishda, baʼzi metall murakkab kristall panjara tuzilishida boʻladi. Koʻpchilik metall tashqi sharoitga (tra, bosim) koʻra, ikki yoki undan koʻp modifikatsiyada boʻlishi mumkin. Metallning suyukdanish temperaturalari — 38,87° dan (Hg) 3380° gacha (W), zichligi 0,531 g/sm3 dan (Li) 22,5 g/sm3 gacha (Os). M. oʻziga xos optik, termik, mexanik, elektrik va boshqa bir necha xossalarga ega; chunonchi, suyukdanish va qaynash temperaturasining yuqoriligi, sirtidan yorugʻlik va tovushni qaytishi, issiq va elektrni yaxshi oʻtkazishi, zarba taʼsiridan yassilanishi va choʻzilishi koʻpchilik Metallning eng muhim fizik xossasidir.

Zichligi 5 dan kichik metall yengil, 5 dan kattalari — ogʻir metall deyiladi. Temir va uning qotishmalari qora metall, qolganlari rangli metall deb yuritiladi. Asl metall bunga qaramaydi. Nodir metalllar jumlasiga vanadiy, molibden, berilliy, indiy, sirkoniy, lantan, niobiy, tantal, reniy, germaniy, galliy, talliy va boshqa kiradi. "Nodir metal" degan ibora shartli ibora boʻlib, sof metall ajratib olish usullarining qanchalik takomillashganiga bogʻliq; bir vaqtlar "nodir" deb hisoblangan titan endilikda "nodirlar" jumlasigakirmaydi (metallning kimyoviy va fizik xossalari haqida metall elementlarga oid maqolalarga qarang). Metallarning baʼzi birikmalarida (qotishmalarda ham) metall bogʻlanish (metallni hosil qiluvchi zarralar orasidagi bogʻlanish) saqlanib qoladi. Metallar tabiatda erkin va kimyoviy birikmalar holida uchraydi. Asl metalllar(oltin, platina, kumush), baʼzan mis, qalay va simob sof holda topiladi

Yarimo'tkazgichlar oʻtkazuvchanligi jihatidan metall va dielektriklar orasidagi moddalar boʻlib, oʻz fizik xususiyatlarini turli tashqi taʼsirlar (masalan yoritish, isitish va hokazo) natijasida keng intervalda oʻzgartira olish xususiyatiga ega. Yarimoʻtkazgichlar elektronika va mikroelektronikada juda keng qoʻllanilib, zamonaviy elektr jihozlarning deyarli hammasi - kompyuterlardan tortib to uyali aloqa telefonlarigacha barchasi yarimoʻtkazgichli texnologiyaga asoslangan. Eng keng qoʻllaniladigan yarimoʻtkazgich modda kremniyboʻlib, boshqa moddalar ham keng qoʻllaniladi.

Yarimoʻtkazgichlar — elektr tokini yaxshi oʻtkazuvchi moddalar (oʻtkazgichlar, asosan, metallar) va elektr tokini amalda oʻtkazmaydigan moddalar (dielektriklar) orasidagi oraliq vaziyatni egallaydigan moddalar. Mendeleyev davriy sistemasida II, III, IV, V va VI guruhlarda joylashgan koʻpchilik elementlar. ularning bir qator birikmalari yarimo'tkazgichlar jumlasiga kiradi. Yarimotkazgichda ham metallardagi kabi elektr oʻtkazuvchanlik elektronlarning harakati tufayli yuzaga keladi. Biroq elektronlarning harakatlanish sharoitlari metallar va Ya.da turlicha boʻladi. Yarimotkazgich quyidagi asosiy xususiyatlarga ega: Yarimotkazgichning elektr oʻtkazuvchanligi temperatura koʻtarilishi bilan ortib boradi (mas, temperatura 1 K ga ortganda Yarimotkazgichning solishtirma oʻtkazuvchanligi 16—17 marta ortadi); Yarimotkazgichning elektr oʻtkazuvchanligida erkin elektronlardan tashqari atom bilan bogʻlangan elektronlar ham ishtirok etadi (baʼzi hollarda bogʻlangan elektronlar asosiy rol oʻynaydi); sof Yarimotkazgichga oz miqdorda qoʻshilma kiritib, uning oʻtkazuvchanligini keskin oʻzgartirish mumkin (mas, 0,01% qoʻshilma kiritilganda Yarimotkazgichning oʻtkazuvchanligi 10000 marta ortib ketadi).

Past tralarda Ya.ning solishtirma qarshiligi juda katta boʻladi va amalda ular izolyator hisoblanadi, lekin temperatura ortishi bilan ularda zaryad tashuvchilarning konsentratsiyasi keskin ortadi. Mas, sof kremniyda 20° trada erkin elektronlar konsentratsiyasi ~1017m~3boʻlsa. 700° da 1024 m"3gacha, yaʼni million martadan koʻproq ortadi. Ya.da erkin elektronlar konsentratsiyasining traga bunday keskin bogʻlikligi oʻtkazuvchanlik elektronlari issiqlik harakati taʼsirida hosil boʻlishini koʻrsatadi. Yarimoʻtkazgich kristallda atomlar valent elektronlari yordamida oʻzaro bogʻlangan. Atomlarning issiqlik tebranishlari vaqtida issiqlik energiyasi valent elektronlar orasida notekis taqsimlanadi. Ayrim elektronlar oʻz atomi bilan bogʻlanishni uzib, kristallda erkin koʻchib yurish imkonini beradigan yetarli miqdordagi issiqlik energiyasiga ega boʻlib qolishi va erkin elektronlarga aylanishi mumkin.

Tashqi elektr maydon boʻlmaganda bu erkin elektronlar tartibsiz harakat qiladi. Elektr maydon taʼsirida esa maydonga qarshi yoʻnalishda tartiblangan harakatga kelib, Ya.da tok hosil qiladi. Erkin elektronlar yuzaga keltirgan oʻtkazuvchanlik elektron yoki ptip oʻtkazuvchanlik deb ataladi.

Bogʻlangan elektronning oʻz atomini "tashlab ketishi" atomning elektr neytralligini buzadi. unda "ketib qolgan" elektron zaryadiga miqdoran teng musbat zaryad — teshik vujudga keladi. Tashqi elektr maydon boʻlmaganda elektronlar ham, teshiklar ham tartibsiz harakatlanadi, tashqi maydon boʻlganda esa elektronlar maydonga qarshi, teshiklar maydon boʻylab koʻchadi. Teshiklarning koʻchishi bilan bogliq oʻtkazuvchanlik teshikli yoki rtmp oʻtkazuvchanlik deyiladi. Erkin elektronlar soni bilan teshiklar soni bir-biriga tengligi tushunarli. Aniklanishicha, ularning harakatlanish tezligi ham bir xil ekan. Demak, Ya.dagi tok ayni vaqtda ham elektron, ham teshikli oʻtkazuvchanlikdan vujudga keladi. Bunday elektronteshikli oʻtkazuvchanlik Ya.ning xususiy oʻtkazuvchanligi deyiladi. Xususiy oʻtkazuvchanlik sof Ya.da kuzatiladi. Biroq tabiatda sof Ya. yoʻq. Baʼzi qoʻshilmalar Ya.ni erkin elektronlar bilan boyitsa, boshqa baʼzi qoʻshilmalar teshiklar bilan boyitadi. Ya.da yuzaga keladigan bunday oʻtkazuvchanlik qoʻshilmali oʻtkazuvchanlik deb ataladi.

Agar asosiy Ya. atomi oʻrniga elementlar davriy sistemasida undan keyingi guruhda turgan element atomi kiritilsa, bu qoʻshilma atomning bitta valent elektroni atomlararo bogʻlanishda ishtirok etmaydi va erkin elektronlar safiga qoʻshiladi, binobarin, itip oʻtkazuvchanlik ortadi. Va, aksincha, undan oldingi oʻrinda turgan element atomi kiritilsa, atomlararo toʻla bogʻlanishda 1 ta elektron yetishmaydi, teshik hosil boʻladi. Bunda rtip oʻtkazuvchanlik ortadi. Qoʻshimcha birinchi holda donor (elektron beruvchi) qoʻshilma, ikkinchi holda esa akseptor (elektron oluvchi) qoʻshilma deb ataladi.

Shunday qilib, Ya.ning elektr oʻtkazuvchanligi xususiy va aralashmali oʻtkazuvchanliklar yigʻindisidan iborat boʻladi. Yuqori tralarda xususiy oʻtkazuvchanlik, past tralarda esa qoʻshilmali oʻtkazuvchanlik asosiy rol oʻynaydi.

Dielektriklar (dia... va ing . electric — elektr) — elektr tokini deyarli oʻtkazmaydigan material (modda) lar; solishtirma elektr qarshiligi — 107—1020 Omm, dielektrik kirituvchanligi — 4—104. Dielektrikelektr tokini oʻtkazgichlarga nisbatan 1015—1020 marta yomon oʻtkazadi. "Dielektrik" atamasini fanga M. Faradey kiritgan. Ionlashmagan barcha gazlar, baʼzi suyukliklar va qattiq jismlar Dielektrik hisoblanadi. Tashqi elektr maydon taʼsiri boʻlmagan hollarda D.ni kutbli dielektrik hamda qutbsiz Dielektrikga ajratish mumkin. Bunda dielektrik molekulalarining dipol momentlari nolga teng (qutbsiz molekulalar) yoki fazodagi yoʻnalishlar boʻyicha ixtiyoriy ravishda taqsimlangan boʻladi (qutbli molekulalar). Ikkala holda ham dielektrikning yigʻindi elektr momenti nolga teng boʻladi. Qutblanish elektr maydon kuchlanishiga, t-raga, muhitning elektr xossasiga bogʻliq. Qutbli dielektrikga spirt, toza suv; qutbsiz dielektrikga inert gazlar, kislorod, vodorod, benzol, polietilen va b. kiradi.

Qutbli molekulalardan tashkil topgan dielektrik elektr maydonga joylashtirilganda, har bir dipolni maydon kuchlanganligi yoʻnalishida buruvchi taʼsir kuchlari vujudga keladi. Ammo toʻla burilishga issiklik harakatlari toʻsqinlik qiladi. Natijada musbat zaryadlar elektr maydon yoʻnalishida, manfiy zaryadlar esa teskari yoʻnalishda koʻchadi. Umuman barcha turdagi qutblanish natijasida tashqi maydon kuchlanganlik chiziqdari dielektrikdan chiqayotgan nuqtalarda musbat va dielektrikga kirayotgan nuqtalarda manfiy bogʻlangan zaryadlar hosil boʻladi. Azot, kislorod, vodorod gazlari, toluol, benzol suyuqliklari va polistirol, polietilen, naftalin kabi kat-tik moddalar bularga misol boʻla oladi. Qutblanish elektronlar va ionlarning siljishi tufayli vujudga kelsa, bundan dielektrikning dielektrik kirituvchanligi 4 dan 15 gacha qiymatlarga ega boʻlishi mumkin.

Tashqi maydon boʻlmaganda oʻz-oʻzidan qutblanish qobiliyatiga ega boʻlgan dielektrik guruhi ham mavjud. Ular segneto-elektriklar deb ataladi. Ularning dielektrik kirituvchanligi bir necha mingga yetishi mumkin. Segnetoelektriklarda deformatsiya vaqtida qutblanishi kuzatiladi. Bu hodisa pyezoelektrik effekt deb yuritiladi.

Dielektrik qattiq (organik, anorganik), suyuq va gazsimon xillarga boʻlinadi. Qattiq organik dielektrikga sellyuloza, kauchuk, qat-ron, bitumlar, parafinlar, mum, yogʻoch, qogʻoz, plastmassalar, lok boʻyoqlar va b. kiradi. Bular kuch, signal ka-bellarini izolyasiyalashda, kondensatorlar, gʻaltaklar, qistirmalar tayyorlashda, elektr apparaturalar simlari va chulgʻamlarining izolyasiyalariga shimdirishda ishlatiladi. Qattiq anorganik dielektrikga radiotexnik keramika, segnetoelektriklar, pyezoelektriklar, elektronik shisha, slyudalar va b. kiradi. Bulardan izolyatorlar, yuqori chastotali kondensatorlar, pyezoelementlar, ballonlar, elektrovakuum asboblar va b. tayyorlanadi. Suyuq dielektrikga kuch transformatoriga, yuqori kuchlanishli ulab-uzgichlarga quyiladigan mineral moylar misol boʻladi. Gazsimon dielektrikga elegaz [oltingugurt (VI)- ftorid], vodorod, inert gazlar, havo va b. kiradi. Elegazlar kondensator va kabellarda, vodorod turbogeneratorlarda, inert gazlar ion asboblarda ishlatiladi.

Xulosa o'rnida shuni aytish mumkinki yarimo'tkazgichlarning hayotdagi o'rni beqiyosdir. Zamonaviy hisoblash texnikasida axborotni raqamli qayta ishlash usuli muhim rol oynaydi. Raqamli yarim otkazgichli IMSlar hisoblash texnikasi qurilmalari va tizimining negiz elementi hisoblanadi. Hisoblash mashinalari tomoniday qayta ishlanayotgan berilganlar, natija va boshqa axborotlar faqat ikki qiymat oladigan (ikkilik sanoq tizimi) elektr signallari korinishida ifodalanadi.

Analog axborotni raqamli korinishga aylantirish uchun uni kvantlaydilar, yani vaqt boyicha uzluksiz signal uning malum nuqtalardagi diskret qiymatlari bilan almashtiriladi. Songra berilgan signal oxirgi diskret qiymatiga mos ravishda raqam beriladi. Signal diskret darajalarini raqamlar ketma ketligi bilan almashtirish jarayoni kodlash deb ataladi. Olingan raqamlar ketma ketligi signal kodi deb ataladi.

Ikkilik sanoq tizimida biror son ikki raqam: 0 va 1 orqali ifodalanadi. Raqamlarni ifodalash uchun raqamli tizimlarda tok yoki kuchlanish kabi elektr kattalikni ikki holatdagi signalini qabul qilishga moslashgan elektron sxema bolishi talab qilinadi. Kattalikning biri 0 ga, ikkinchisi 1 ga mos kelishi kerak. Ikki elektr holatga ega bolgan elektr sxemalarni yaratishning nisbatan soddaligi shunga olib keldiki, hozirgi zamonaviy raqamli texnika mana shu ikkilik ifodalanish tizimga asoslangan.

Butun dunyo sohalari kompyuterlashtirilayotgan paytda nanotexnologiyaning yutuqlaridan foydalanish avvalo elektronika aniqrog'i kristallarning sohaviy nazariyasini chuqur o'rganishni va tadqiq etishni talab qiladi.Bu bilan EHM larning ishlash tezligi kuchini oshirish mumkin.



Foydalanilgan adabiyotlar:

  1. Q.P.Abduraxmanov, V.S.Xamidov, N.A.Axmedova “FIZIKA”; 

  2. www.aim.uz 

  3. www.referat.arxiv.uz 

  4. www.hozir.org 

  5. www.mylab.uz 

Download 25.47 Kb.

Do'stlaringiz bilan baham:
1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2020
ma'muriyatiga murojaat qiling

    Bosh sahifa
davlat universiteti
ta’lim vazirligi
O’zbekiston respublikasi
maxsus ta’lim
zbekiston respublikasi
axborot texnologiyalari
o’rta maxsus
davlat pedagogika
guruh talabasi
nomidagi toshkent
pedagogika instituti
texnologiyalari universiteti
toshkent axborot
xorazmiy nomidagi
rivojlantirish vazirligi
haqida tushuncha
samarqand davlat
toshkent davlat
navoiy nomidagi
nomidagi samarqand
ta’limi vazirligi
vazirligi toshkent
Toshkent davlat
matematika fakulteti
tashkil etish
Darsning maqsadi
kommunikatsiyalarini rivojlantirish
Ўзбекистон республикаси
Alisher navoiy
bilan ishlash
fanining predmeti
Nizomiy nomidagi
pedagogika universiteti
таълим вазирлиги
vazirligi muhammad
fizika matematika
maxsus ta'lim
fanlar fakulteti
sinflar uchun
universiteti fizika
o’rta ta’lim
ta'lim vazirligi
Toshkent axborot
махсус таълим
haqida umumiy
Referat mavzu
ishlab chiqarish
tibbiyot akademiyasi
pedagogika fakulteti
umumiy o’rta
Samarqand davlat