Ташкентский университет информационных технологий имени Мухаммада ал-Хоразмий Карши филлиал
Предмет: Линейная алгебра
1.Самостоятельная работа
Тема: Евклидовы пространства. Построение ортонормированного базиса в Евклидовом пространстве.
Выполнил: Ахадов Саидкарим
Проверил: Мусурмонова Шахло
Карши 2021
Евклидово пространство
Евклидово пространство – это линейное пространство с некоторым образом введенной операцией «скалярного произведения».
1. Определение и простейшие свойства.
Определение 1. Линейное пространство над полем вещественных чисел R называется евклидовым пространством, если определено правило, ставящее им в соответствие вещественное число, называемое скалярным произведением и , обозначаемое , и удовлетворяющее следующим аксиомам:
1) коммутативность: выполняется ;
2) дистрибутивность: выполняется ;
3) и выполняется ;
4) выполняется , причем
Примеры.
1) Множество векторов в с обычным образом определенным скалярным произведением векторов (см. свойства скалярного произведения) образует евклидово пространство.
2) Множество непрерывных на отрезке функций образует евклидово пространство, если скалярное произведение задается формулой:
Свойство 1) скалярного произведения очевидно, 2) и 3) следуют из линейности интеграла, 4) следует из того, что от неотрицательной функции неотрицателен и равен нулю только если .
3) Пространство упорядоченных вещественных чисел образует евклидово пространство со скалярным произведением, задаваемым следующей формулой: если и из , то
(1)
Свойство 1) − очевидно, свойства 2) и 3) следуют из определения сложения векторов в и умножения на число, т.е.
;
.
Свойство 4) следует из того, что и равно нулю лишь тогда когда , т.е. .
4) Пусть − матрица над и пусть – симметричная, т.е. . Для любого используем для построения выражения . Такое выражение называется квадратичной формой. Будем предполагать, что такая форма положительно определена, т.е. она больше нуля и равна нулю лишь если .
Такую матрицу можно использовать для задания скалярного произведения в следующим образом: ,
. (2)
Свойство 1) следует из симметричности матрицы , 2) и 3) − из свойств вещественных чисел, 4) − из положительной определенности соответствующей квадратичной формы.
Замечание. Формула (1) из (2) при − единичная матрица.
Теорема 1 (неравенство Коши–Буняковского). Для любых элементов евклидового пространства справедливо неравенство:
. (3)
Неравенство (3) называется неравенством Коши–Буняковского.
Do'stlaringiz bilan baham: |