Ўзбекистон республикаси ахборот технологиялари ва коммуникацияларини ривожлантириш вазирлиги муҳаммад ал-хоразмий номидаги



Download 7,61 Mb.
Pdf ko'rish
bet101/321
Sana10.07.2022
Hajmi7,61 Mb.
#768599
1   ...   97   98   99   100   101   102   103   104   ...   321
Bog'liq
591c3149ad5ef

Masalaning qo‘yilishi: 


146 
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0
1000
2000
3000
4000
5000
6000
x
(м)
Н= (3300 x)/(x
2
+ 1/10000)
1/2
- (3300 (x - 0.03))/((x - 0.03)
2
+ 1/10000)
1/2
Н

/м)
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
5
10
15
20
25
30
35
40
45
a
(м)
H = 1.59/a
Н

/м)
1.
Tokli to‘g‘ri o‘tkazgichning 
AB
kesmasi o‘rtasida unga o‘tkazilgan perpendikulyarda 
AB
kesmadan 
см
5
uzoqlikda turgan 
C
nuqtada tokli o‘tkazgich hosil qilgan magnit maydon 
kuchlanganligini toping. 
AB
kesma 
C
nuqtadan 
0
60 burchak ostida ko‘rinadi. 
Yechilishi:
Bio-Savar-Laplas qonuniga ko‘ra 

I
tok o‘tayotgan to‘g‘ri o‘tkazgich 

dl
uzunlik elementining undan 
r
masofadagi 
A
nuqtada hosil qilgan magnit maydon kuchlanganligi 
dl
r
I
dH
2
4
sin



formulaga muvofiq aniqlanadi. 

arctg
l




2
sin
ad
dl


ва 

sin
a
r

dan 



d
a
dH
sin
4
1

kelib chiqadi.
MATLAB dasturiy tizimi yordamida 



d
a
dH
sin
4
1

tenglikni hisoblaymiz va magnit 
maydon kuchlanganligi (
H
) ning masofa (
a
) ga bog‘lanish (
a
H
59
.
1

) grafigini chiziladi. 
syms H pi I a f dH f1 f2 
dH=sym('(-I)/(4*pi*a)*sin(f)') 
H = int(dH,f) 
H =(cos(f)*i)/(4*pi*a) 
H=subs(H,pi/3)-subs(H,2*pi/3) 
H =i/(4*pi*a) 
i=20;a=0.05;pi=3.14; 
H =i/(4*pi*a)= 31.8471 
H=sym('1.59/a') 
ezplot(H,[0, 0.5])
2.
Uzunligi 
см
3
va diametri 
см
2
bo‘lgan solenoid o‘qi bo‘ylab magnit maydon 
kuchlanganligini taqsimlang. Solenoiddan o‘tayotgan tok kuchi 
A
2
, g‘altak 1000 o‘ramga 
ega. Masofaning magnit maydon kuchlanganligiga bog‘lanish grafigini chizing. 
Yechilishi:
Solenoidning o‘qidagi magnit maydon kuchlanganligi 
)
cos
(cos
2




In
H
formula yordamida aniqlanadi. 
2
2
cos
x
D
x





2
)
(
2
cos
x
l
D
x
l





ва 
l
N
n

dan 
)
)
2
(
)
(
)
2
(
(
2
2
2
2
2
x
D
x
x
l
D
x
l
l
IN
H






tenglama kelib chiqadi. Bu yerda 


A
I
2
tok kuchi, 


1000
N
solenoid o‘ramlari soni, 


см
l
3
solenoid uzunligi, 


см
D
2
diametri. 
MATLAB dasturiy tizimi yordamida 
1
.
0
0


x
oraliqda 
x
ga qiymatlar beramiz va 
magnit maydon kuchlanganligi (
H
) ning masofa (
x
) ga bog‘lanish grafigi 0.0001 aniqlik bilan 
chiziladi. 
H=sym('3300*((0.03-x)/(sqrt(1/10000+(0.03-x)^2)))+3300*(x/(sqrt(1/10000+x^2)))') 
H =(3300*x)/(x^2 + 1/10000)^(1/2) - (3300*(x - 0.03))/((x - 0.03)^2 + 1/10000)^(1/2) 
ezplot(H,[0,0.1]) 
x=0; H = 3.1307e+003 
x=0.005; H = 4.5398e+003
x=0.01; H = 5.2851e+003
x=0.015; H = 5.4915e+003 
x=0.02; H = 5.2851e+003 
x=0.03; H = 3.1307e+003 
x=0.04; H = 868.0179 
x=0.05; H = 284.3065 


147 
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0
5
10
15
20
25

(м)
H = 0.0016/(x
2
+ 0.0016)
3/2
Н

/м)
x=0.06; H = 124.4451 
x=0.07; H = 65.3631 
x=0.08; H = 38.6008 
x=0.09; H = 24.7164 
x=0.1; H = 16.7894 
3.
Aylana shakldagi kontur o‘qida kontur tekisligidan 
см
3
naridagi magnit maydon 
kuchlanganligini toping. Kontur radiusi 
см
4
va konturdagi tok 
A
2 .
Yechilishi:
Doiraviy kontur elementining kontur o‘qidagi magnit maydon kuchlanganligi

cos
dH
dH
x

. Bio-Savar-Laplas qonuniga ko‘ra 
dl
r
I
dH
2
4
sin




dl
r
I
dH
x



cos
4
sin
2


1
sin



r
R


cos

2
2
R
x
r


ekanligidan 


l
dl
r
IR
H
0
3
4

kelib chiqadi.
MATLAB dasturiy tizimidan foydalanib magnit maydon kuchlanganligini hisoblab magnit 
maydon kuchlanganligi (
H
) ning masofa (
x
) ga bog‘lanish grafigini 
1
.
0
0


x
oraliqda 
chizamiz. 
syms H pi I x l r l1 l2 
dH=sym('(I*R)/(4*pi*(r^3))') 
dH =(R*i)/(4*pi*r^3) 
i=2;x=0.03;pi=3.14;r=0.05;R=0.04; 
H = int(dH,l) 
H =(R*l*i)/(4*pi*r^3) 
H =(R*l*i)/(4*pi*r^3); 
H=subs(H,0.08*pi)-subs(H,0) 
H =12.8000 
H =sym('0.0016/(sqrt(0.0016+x^2)^3)') 
H =0.0016/(x^2 + 0.0016)^(3/2) 
ezplot(H, [0,0.1])
 
 
Fizikadan amaliy mashg‘ulot jarayonida zamonaviy axborot texnologiyalaridan 
foydalanish, xususan MATLAB, MAPLE, MathCAD dasturiy tizimlari hamda C
++
, Java(SE-8)-
eclipse kompyuter dasturlaridan samarali grafik rejimida qo‘llash o‘quvchi amaliy faoliyatini 
faollashtirish bilan bir qatorda fanlararo uzviylikni ta’minlaydi. 
EDUCATIONAL TECHNOLOGIES IN PROBLEM-BASED LEARNING IN HEALTH 
SCIENCES EDUCATION: A SYSTEMATIC REVIEW 
 
Sh.X.Pozilova (TATU, “Axborot ta’lim texnologiyalari” kafedrasi assistenti) 
D.X.Pozilova (Toshkent axborot texnologiyalari kasb-hunar kolleji, “Kompyuter 
injenering” kafedrasi katta o’qituvchisi) 
 
As a modern pedagogical philosophy, problem-based learning (PBL) is increasingly being 
recognized as a major research area in student learning and pedagogical innovation in health 
sciences education. In contrast to traditional lecture-dominant teaching and learning approaches, 
inquiry-based approaches such as PBL prompt students to actively engage in knowledge 
construction and develop competencies across multiple contexts. This review focuses on PBL 
instead of other distinct inquiry-based pedagogical approaches, such as discovery learning, 
experiential learning, and project-based learning. Given the high level of technological 
engagement of 21st century learners, a new area of research interest is examining the role of 


148 
emerging educational technologies in PBL. Therefore, the aim of this paper is to review new and 
emerging educational technologies in problem-based curricula with a specific focus on 3 cognate 
disciplines: medicine, dentistry, and speech and hearing sciences. The selection of these 3 related 
health sciences curricula is based on their level of current activity in the development and research 
of PBL. Of particular interest to this review are studies investigating the role of such technologies 
in achieving PBL-related student learning outcomes of flexible knowledge, effective problem-
solving skills, self-directed learning skills, collaborative teamwork skills, and intrinsic motivation. 
Included studies are ones in which educational technologies have been adopted to support 
problem-based approaches to learning in both undergraduate and postgraduate programs. The 
types of technological innovations identified encompass such affordances as learning management 
system (LMS), specialist learning software (eg, CMapTools), immersive virtual environments (eg, 
SecondLife), and resources such as 3-dimensional (3D) anatomy models. Also of interest was the 
use of new hardware, such as interactive whiteboards (IWBs), and how these are combined to 
reshape new forms of learning in both synchronous, face-to-face “PBL 2.0”. Additional studies 
are exploring the potential to initiate asynchronous models of PBL drawing on distance education 
needs and modes of delivery. Such innovations draw on the potential of new technologies to 
provide a rich learning context with access to well-structured information and new spaces for 
knowledge collaboration. However, although the field is growing and a few reviews have focused 
on e-learning innovation in health sciences and education, to date there is no existing systematic 
review of empirical studies on the usage of educational technologies in PBL in health sciences 
education. 
We have identified 8 roles for technology in learning in the educational literature relevant to 
identifying studies for inclusion in this review: 
1.
Access to and structuring of information 
2.
Curriculum platform 
3.
Communications media 
4.
Thinking tools 
5.
Rich contexts for learning 
6.
Collaboration spaces 
7.
A perspective toolkit 
8.
Scaffolding 
The latter issue of scaffolding refers to situations in which experts offer assistance to learners 
in carrying out new tasks that learners would not be able to complete without support. This issue 
has been debated in recent PBL and inquiry learning scholarship with detractors indicating 
concerns that PBL does not provide sufficient scaffolding and that the open nature of the problems 
may add to cognitive load. Proponents argue that PBL is highly scaffold through strategies such 
as making disciplinary thinking and strategies explicit, embedding expert guidance, and 
structuring complex tasks thereby reducing cognitive load. Open to further debate is whether the 
inclusion of technological affordances such as iPads, laptops, and simulations or variations of 
synchronous and asynchronous technology-rich delivery of PBL will support or detract from the 
scaffolding of learning. 
Analysis of the studies reviewed will, therefore, focus on the effects of educational 
technologies in the PBL cycle while addressing the issue of scaffolding of student learning in 
particular both in face-to-face tutorials and during self-directed learning. The overarching goal is 
to provide new insights on how learners synthesize information from the multiple technologies 
employed in PBL at a time of pronounced educational innovation. 
Methods 
Focus Questions 
Inspired by Cook and West’s approach to conducting systematic reviews in medical 
education and existing review papers, the screening and classification process conducted is 
presented subsequently. 


149 
The focused questions addressed the population, intervention, comparison, and outcomes 
(PICO) model as recommended by Cook and West. In addressing the issues above, the research 
questions addressed in this review are: 
1.
What effects of educational technologies on students and tutors have been identified 
in PBL-based applications? 
2.
How can educational technologies support digitally enhanced and interactive PBL 
in health sciences education? 
Eligibility Criteria 
Eligibility criteria for the selection of studies for review were also determined in light of the 
PICO guidelines. The population was limited to postsecondary education, specifically in dentistry, 
medicine, and speech and hearing sciences, in which PBL was the key educational pedagogy and 
curricula. Three types of educational technologies were identified as interventions used to support 
PBL: learning software and digital learning objects (video/3D models), IWBs and plasma screens, 
and LMSs. Three types of technologies were selected based on their relatively frequent 
implementation and innovations as indicated in on-site visitations and communications with health 
sciences PBL curricula across the globe. Regarding comparisons, although studies adopting 
experimental designs were included, this was not considered an exclusive criterion given that much 
educational research in the field is case-based. Finally, included studies indicated outcomes of the 
effects, both positive and negative, of the use of educational technologies on student learning and 
staff engagement in PBL. Evidence was determined from both databases and the grey literature. 
Selection of Publications 
A comprehensive computerized database search of full-text articles published in English 
from 1996 to 2014 was carried out using 3 education databases: ProQuest, Scopus, and 
EBSCOhost. Initial search terms were (“educational technologies” OR “learning technologies”) 
AND (“problem-based learning” OR “problem based learning” OR “PBL”) AND (“clinical” OR 
“dent*” OR “med*” OR “speech and hearing”). To narrow down the number of studies retrieved 
in each database, search terms in title/keywords/abstracts were selected in the initial search stage. 
The titles and abstracts of retrieved papers were first screened and rated for inclusion based on the 
PICO inclusion criteria. Additional cross-referencing uncovered grey literature in the form of 
articles and book chapters. Reviews and commentaries were excluded. The review flowchart 
(Figure 1) indicates the educational database search method and criteria as well as the final number 
of studies yielded for analysis (N=28). Search results indicate 3 types of educational technologies, 
learning software and digital learning objects, IWB (Figure 2 and plasma screens, and LMS, were 
investigated. Given that LMS combines a range of course or subject management and pedagogical 
tools to offer a means of designing, building, and delivering online learning environments [25], 
LMS in the search process includes examples of what are also termed course management systems 
or CMS (eg, WebCT/Blackboard, Angel, Sakai, and Moodle). Following Cook and West’s 
approach [20], key information (ie, author, year, research design, research purpose, findings) for 
each article were included. The results were then analyzed and synthesized by narrative or 
quantitative pooling, exploring effects of educational technologies in PBL-based applications. 
Conclusions 
In conclusion, this literature review indicates a generally positive effect from the adoption 
of various educational technologies in PBL. Positive outcomes for student learning included 
providing rich, authentic problems and/or case contexts for learning; supporting student 
development of medical expertise through the accessing and structuring of expert knowledge and 
skills; making disciplinary thinking and strategies explicit; providing a platform to elicit 
articulation, collaboration, and reflection; and reducing perceived cognitive load. Insufficient 
technical support, infrastructure, and resources were seen as impacting negatively on uptake and 
learning outcomes. Staff and student induction and ongoing training in the use of educational 
technologies for learning in inquiry-based contexts such as PBL is recommended. 
Although educational technologies have been increasingly used in health sciences education, 
it has been questioned whether they can completely substitute traditional teaching methods. The 


150 
rise of Massive Online Open Courses in all fields, including health sciences, has been seen as 
positive, particularly for continuous medical education and public health literacy. In considering 
undergraduate inquiry-based curricula, this review supports Hmelo-Silver and Bridges et al’s 
predictions that technology can play an important but synergistic role with other components of 
PBL. Further research into the various applications of educational technologies in PBL curricula 
is needed to fully realize their potential in enhancing inquiry-based approaches in health sciences 
education. In an increasingly digital, networked world, convergence of educational technologies 
is increasingly apparent. This has given rise to understandings that learners are positioned within 
digital ecosystems. Consequently, it is possible that a learner might engage with the merging of 
distinct educational technologies. The effects of learning in a digital ecosystem need to be 
identified and explored in further research. 

Download 7,61 Mb.

Do'stlaringiz bilan baham:
1   ...   97   98   99   100   101   102   103   104   ...   321




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish