Ўзбекистон республикаси ахборот технологиялари ва коммуникацияларини ривожлантириш вазирлиги муҳаммад ал-хоразмий номидаги



Download 4,05 Mb.
Pdf ko'rish
bet61/87
Sana28.05.2022
Hajmi4,05 Mb.
#614253
1   ...   57   58   59   60   61   62   63   64   ...   87
Bog'liq
28-29-aprel

 


145 
 
THE USE OF REINFORCEMENT LEARNING FOR LTE NETWORKS 
 
A.A. Qodirov (TUIT named after Muhammad al-Khwarizmi, Department of Data 
Communication Systems and Networks, assistant and Doctoral student) 
Artificial Intelligence and Machine Learning are much trending and also 
confused terms nowadays. Machine Learning (ML) is a subset of Artificial 
Intelligence. ML is a science of designing and applying algorithms that are able to 
learn things from past cases. If some behaviour exists in past, then you may predict if 
or it can happen again. Means if there are no past cases then there is no prediction. 
ML can be applied to solve tough issues like credit card fraud detection, enable 
self-driving cars and face detection and recognition. ML uses complex algorithms 
that constantly iterate over large data sets, analyzing the patterns in data and 
facilitating machines to respond different situations for which they have not been 
explicitly programmed. The machines learn from the history to produce reliable 
results. The ML algorithms use Computer Science and Statistics to predict rational 
outputs. There are 3 major areas of ML (Figure 1.): 
Figure 1. Types of Machine Learning 
The theory of Machine Learning (ML) is a field of computer science, where 
computing and network devices have the ability to learn without the need to be 
explicitly programmed. In other words, the theory of ML sets the goal of finding and 
developing mathematical models that allow computers to independently develop 
algorithms for solving a particular computational or network problem. Reinforcement 
learning 
(
RL), an area of ML introduces the concepts of agent, environments, and 
rewards (agent, environment, and reward, respectively) that describe the process of 
optimizing a particular network task. An agent has a certain set of actions by which it 
interacts with the environment. Performing a certain action, the agent receives a 
reward from the environment, and, starting from the value of the received reward, 
forms a certain idea of the optimality of the choice made. The main objective of 
reinforcement learning is the task of comparing actions with the current situation in 
the interaction environment in order to maximize the value of the reward received. 
RL is a learning process in which an agent can periodicaliy make decisions, 
observe the results, and then automatically adjust its strategy to achieve the optimal 
policy. However, RL process consumes a lot of time to reach the optimal policy as it 
has to explore and gain knowledge of an entire system, Deep RL(DRL) using Deep 
learning improves the learning speed and the performance. In communications and 
networking, DRL can be used to effectively address various problems and 


146 
challenges. For example, IoT devices and mobile users need to make local and 
autonomous decisions, e.g., spectrum access, modulation techniques, coding 
techniques, data rate selection, transmit power control, etc., to achieve the goals of 
different networks including, e.g., throughput maximization and energy consumption 
minimization. Under uncertain and stochastic environments, most of the decision-
making problems can be modeled by a Markov Decision Process. However, the 
modern networks are large-scale and complicated, and thus the computational
complexity of the techniques rapidly becomes unmanageable. DRL can be used to 
overcome the challenge. Thus, it enables network controllers, e.g., base stations to 
solve non-convex and complex problems, e.g., joint user association, computation, 
and transmission schedule, to achieve the optimal solutions without complete and 
accurate network information. It allows network entities to learn and build 
knowledge about the communication and networking environment. The network 
entities can learn optimal policies, e.g., base station selection, channel selection, 
handover decision, caching and offloading decisions, without knowing channel 
model and mobility pattern. It also provides autonomous decision-making. Network
entities can make observation and obtain the best policy locally with minimum or 
without information exchange among each other. This not only reduces 
communication overheads but also improves security and robustness of the 
networks. In large-scale networks, e.g., IoT systems with thousands of devices, DRL 
allows network controller or IoT gateways to control dynamically user association, 
spectrum access, and transmit power for a massive number of IoT devices and 
mobile users. Other problems in communications and networking such as cyber-
physical attacks, interference management, and data offloading can be modeled as 
games, e.g., the non-cooperative game. DRL has been recently used as an efficient 
tool to solve the games, e.g., finding the Nash equilibrium, without the complete 
information. 
At the physical layer, LTE network performance is affected factors associated 
with the propagation characteristics of the electromagnetic signal in a wireless 
transmission medium, namely: the level of attenuation, the presence of signal 
reflections from obstacles, interference, as well as the level of electromagnetic noise 
in the medium, both broadband and narrowband. First of all, this affects the 
probability of correct reception and decoding of the transmitted information, which, 
in turn, affects the behavior of layer 2 protocols, which should ensure the reliability 
of information transfer at the data link layer. Ultimately, the negative conditions for 
wireless signal transmission increase the delivery time of frames from one node to 
another, since the ARQ mechanism of the second level introduces a delay in the 
retransmission of frames. The project will propose methods for selecting adaptive 
modulation and coding (AMC) schemes based on reinforcement learning. At the data 
link layer, in addition to its main function - reliable information delivery over the 
radio channel, in wireless networks it implements a multiple access control (MAC) 
mechanism that controls the access of multiple devices to a common radio resource 
in the frequency, time and spatial ranges. Obviously, the more devices compete for 


147 
access to a shared radio resource, the longer the access latency. Accordingly, the 
trans-mission time of the frame to the recipient is directly proportional to the number
of simultaneously competing subscriber devices. In addition, an increased number of 
wireless devices increases the likelihood of interference, which, in turn, increases the 
delivery time of information due to the frame retransmission procedure in the ARQ 
mechanism. The project will develop methods for multiple access, distribution of 
radio resources and frame transfer (HARQ, ARQ) based on reinforcement learning. 
RL comprises three parts: an environment and an interpreter. The goal of the 
RL is to train the agent in such a way that for a given environment state, it chooses 
the optimal action that yields the highest reward. Q-learning can learn a good policy 
by updating an action-value function without an operating model of the environment.
It can efficiently obtain an optimal policy when the state space and action space are 
small. However, in practice, with complicated system models, these spaces are 
usually large.As a result, the Q-learning algorithm may not be able to find the optimal 
policy. Thus, Deep Q-Learning (DQL) algorithm is introduced to overcome this 
shortcoming. When the state-action space is large and complex, deep Q network can 
be used to approximate the Q function. Modern wireless networks are becoming 
more and more complex. Their design needs higher computing capacity, bigger 
datasets, faster and more intelligent learning algorithms, more flexible input 
mechanism, etc. To achieve these, deep learning in wireless networks that can accept 
a large number of network performance parameters, such as link signal-to-noise 
ratios(SNRs), channel holding time, link access success/collision rates, routing delay, 
packet loss rate, bit error rate, etc., and performs analysis on the intrinsic patterns is 
needed. 
References 
1.
A. Geron. “Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow”.,the USA, 2019. 
2.
N. C. Luong, D. T. Hoang. “Applications of Deep Reinforcement Learning in 
Communications and Networking: A Survey”, IEEE Communications Surveys & Tutorials, 2019. 
3.
S. S. Chitnavis. “Cross Layer Routing in Cognitive Radio Network Using Deep Cross Layer 
Routing in Cognitive Radio Network Using Deep Reinforcement Learning”, A Thesis Submitted in 
Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer 
Engineering. 2018. 
4.
 
https://marutitech.com/artificial-intelligence-and-machine-learning/
  

Download 4,05 Mb.

Do'stlaringiz bilan baham:
1   ...   57   58   59   60   61   62   63   64   ...   87




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish