Рентгеновское излучение



Download 7,32 Mb.
bet6/11
Sana05.07.2022
Hajmi7,32 Mb.
#742172
TuriКурсовая
1   2   3   4   5   6   7   8   9   10   11
Bog'liq
bibliofond.ru 606750

Закон Мозли, закон, связывающий частоту спектральных линий характеристического рентгеновского излучения химического элемента с его порядковым номером. Экспериментально установлен Г. Мозли в 1913. Согласно закону Мозли, корень квадратный из частоты  спектральной линии характеристического излучения элемента есть линейная функция его порядкового номера Z:





где R - Ридберга постоянная , Sn - постоянная экранирования, n - главное квантовое число. На диаграмме Мозли (Приложение 3) зависимость от Z представляет собой ряд прямых (К-, L-, М - и т.д. серии, соответствующие значениям n = 1, 2, 3,.).
Закон Мозли явился неопровержимым доказательством правильности размещения элементов в периодической системе элементов Д.И. Менделеева и содействовал выяснению физического смысла Z.
В соответствии с законом Мозли, рентгеновские характеристические спектры не обнаруживают периодических закономерностей, присущих оптическим спектрам. Это указывает на то, что проявляющиеся в характеристических рентгеновских спектрах внутренние электронные оболочки атомов всех элементов имеют аналогичное строение.
Более поздние эксперименты выявили некоторые отклонения от линейной зависимости для переходных групп элементов, связанные с изменением порядка заполнения внешних электронных оболочек, а также для тяжёлых атомов, появляющиеся в результате релятивистских эффектов (условно объясняемых тем, что скорости внутренних сравнимы со скоростью света).
В зависимости от ряда факторов - от числа нуклонов в ядре (изотонический сдвиг), состояния внешних электронных оболочек (химический сдвиг) и пр. - положение спектральных линий на диаграмме Мозли может несколько изменяться. Изучение этих сдвигов позволяет получать детальные сведения об атоме.


= AZ + В,


где А и В - величины, постоянные для каждой линии спектра.
Тормозное рентгеновское излучение, испускаемое очень тонкими мишенями, полностью поляризовано вблизи 0; с уменьшением 0 степень поляризации падает. Характеристическое излучение, как правило, не поляризовано.
При взаимодействии рентгеновских лучей с веществом может происходить фотоэффект , сопровождающее его поглощение рентгеновских лучей и их рассеяние, фотоэффект наблюдается в том случае, когда атом, поглощая рентгеновский фотон, выбрасывает один из своих внутренних электронов, после чего может совершить либо излучательный переход, испустив фотон характеристического излучения, либо выбросить второй электрон при безызлучательном переходе (оже-электрон). Под действием рентгеновских лучей на неметаллические кристаллы (например, на каменную соль) в некоторых узлах атомной решётки появляются ионы с дополнительным положительным зарядом, а вблизи них оказываются избыточные электроны. Такие нарушения структуры кристаллов, называемые рентгеновскими экситонами , являются центрами окраски и исчезают лишь при значительном повышении температуры.
При прохождении рентгеновских лучей через слой вещества толщиной х их начальная интенсивность I0 уменьшается до величины I = I0e-μx где μ - коэффициент ослабления. Ослабление I происходит за счёт двух процессов: поглощения рентгеновских фотонов веществом и изменения их направления при рассеянии. В длинноволновой области спектра преобладает поглощение рентгеновских лучей, в коротковолновой - их рассеяние. Степень поглощения быстро растет с увеличением Z и λ. Например, жёсткие рентгеновские лучи свободно проникают через слой воздуха ~ 10 см; алюминиевая пластинка в 3 см толщиной ослабляет рентгеновские лучи с λ = 0,027 вдвое; мягкие рентгеновские лучи значительно поглощаются в воздухе и их использование и исследование возможно лишь в вакууме или в слабо поглощающем газе (например, Не). При поглощении рентгеновских лучей атомы вещества ионизуются.
Влияние рентгеновских лучей на живые организмы может быть полезным и вредным в зависимости от вызванной ими ионизации в тканях. Поскольку поглощение рентгеновских лучей зависит от λ, интенсивность их не может служить мерой биологического действия рентгеновских лучей. Количественным учётом действия рентгеновских лучей на вещество занимается рентгенометрия , единицей его измерения служит рентген
Рассеяние рентгеновских лучей в области больших Z и λ происходит в основном без изменения λ и носит название когерентного рассеяния, а в области малых Z и λ, как правило, возрастает (некогерентное рассеяние). Известно 2 вида некогерентного рассеяния рентгеновских лучей - комптоновское и комбинационное. При комптоновском рассеянии, носящем характер неупругого корпускулярного рассеяния, за счёт частично потерянной рентгеновским фотоном энергии из оболочки атома вылетает электрон отдачи. При этом уменьшается энергия фотона и изменяется его направление; изменение λ зависит от угла рассеяния. При комбинационном рассеянии рентгеновского фотона высокой энергии на лёгком атоме небольшая часть его энергии тратится на ионизацию атома и меняется направление движения фотона. Изменение таких фотонов не зависит от угла рассеяния.
Показатель преломления n для рентгеновских лучей отличается от 1 на очень малую величину δ = 1-n ≈ 10-6-10-5. Фазовая скорость рентгеновских лучей в среде больше скорости света в вакууме. Отклонение рентгеновских лучей при переходе из одной среды в другую очень мало (несколько угловых минут). При падении рентгеновских лучей из вакуума на поверхность тела под очень малым углом происходит их полное внешнее отражение.


2.3 Регистрация рентгеновских лучей




Глаз человека к рентгеновским лучам не чувствителен. Рентгеновские
лучи регистрируют с помощью специальной рентгеновской фотоплёнки, содержащей повышенное количество Ag, Br. В области λ<0,5 чувствительность этих плёнок быстро падает и может быть искусственно повышена плотно прижатым к плёнке флуоресцирующим экраном. В области λ> 5 чувствительность обычной позитивной фотоплёнки достаточно велика, а её зёрна значительно меньше зёрен рентгеновской плёнки, что повышает разрешение. При λ порядка десятков и сотен рентгеновские лучи действуют только на тончайший поверхностный слой фотоэмульсии; для повышения чувствительности плёнки её сенсибилизируют люминесцирующими маслами. В рентгенодиагностике и дефектоскопии для регистрации рентгеновских лучей иногда применяют электрофотографию (электрорентгенографию).
Рентгеновские лучи больших интенсивностей можно регистрировать с помощью ионизационной камеры (Приложение 4), рентгеновские лучи средних и малых интенсивностей при λ < 3 - сцинтилляционным счётчиком с кристаллом NaI (Tl) (Приложение 5), при 0,5 < λ < 5 - счётчиком Гейгера - Мюллера (Приложение 6) и отпаянным пропорциональным счётчиком (Приложение 7), при 1 < λ < 100 - проточным пропорциональным счётчиком, при λ < 120 - полупроводниковым детектором (Приложение 8). В области очень больших λ (от десятков до 1000 ) для регистрации рентгеновских лучей могут быть использованы вторично-электронные умножители открытого типа с различными фотокатодами на входе.


2.4 Применение рентгеновских лучей




Наиболее широкое применение рентгеновские лучи нашли в медицине для рентгенодиагностики и рентгенотерапии . Важное значение для многих отраслей техники имеет рентгеновская дефектоскопия , например для обнаружения внутренних пороков отливок (раковин, включений шлака), трещин в рельсах, дефектов сварных швов.
Рентгеновский структурный анализ позволяет установить пространственное расположение атомов в кристаллической решётке минералов и соединений, в неорганических и органических молекулах. На основе многочисленных уже расшифрованных атомных структур может быть решена и обратная задача: по рентгенограмме поликристаллического вещества, например легированной стали, сплава, руды, лунного грунта, может быть установлен кристаллический состав этого вещества, т.е. выполнен фазовый анализ. Многочисленными применениями Р. л. для изучения свойств твёрдых тел занимается рентгенография материалов .
Рентгеновская микроскопия позволяет, например, получить изображение клетки, микроорганизма, увидеть их внутреннее строение. Рентгеновская спектроскопия по рентгеновским спектрам изучает распределение плотности электронных состояний по энергиям в различных веществах, исследует природу химической связи, находит эффективный заряд ионов в твёрдых телах и молекулах. Спектральный анализ рентгеновский по положению и интенсивности линий характеристического спектра позволяет установить качественный и количественный состав вещества и служит для экспрессного неразрушающего контроля состава материалов на металлургических и цементных заводах, обогатительных фабриках. При автоматизации этих предприятий применяются в качестве датчиков состава вещества рентгеновские спектрометры и квантометры.
Рентгеновские лучи, приходящие из космоса, несут информацию о химическом составе космических тел и о физических процессах, происходящих в космосе. Исследованием космических рентгеновских лучей занимается рентгеновская астрономия . Мощные рентгеновские лучи используют в радиационной химии для стимулирования некоторых реакций, полимеризации материалов, крекинга органических веществ. Рентгеновских лучей применяют также для обнаружения старинной живописи, скрытой под слоем поздней росписи, в пищевой промышленности для выявления инородных предметов, случайно попавших в пищевые продукты, в криминалистике, археологии и др.




Download 7,32 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   11




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish