1.KIRISH Matematik mantiqning muhim bo’limlaridan birini tashkil etuvchi mulohazalar algebrasini texnikaga (matematik kibernetikaga) tatbiq etilishini ko’rishga o’tamiz. Ushbu bobda rele-kontaktli sxemalar, kontaktli sxemalar va ularning sintezi, funktsional elementlar va ulardan sxemalar yasash, ko’ptaktli sxemalar, funktsional elementlar sistemasining to’liqligi, sxemalarni minimallashtirish muammosi, teskari bog’lanishi bo’lmagan avtomatlar, chekli avtomat haqida umumiy tushunchalar, Mili va Mur avtomatlari kabi masalalar ko’rib chiqilgan. Mantiq algebrasi funktsiyalarini sxemalar(avtomatlar) orqali realizatsiya etish masalasiga alohida ahamiyat berilgan. Mulohazalar algebrasi va m ulohazalar hisobida formulaning tavtalogiya bo’lishi yoki bo‘lmasligini aniqlashning samarali usullaridan biri chinlik jadvalidir. Ammo predikatlar mantiqida bu holat batamom o’zgaradi. Predikatlar mantiqida ixtiyoriy formulaning umumqiymatli yoki umum qiymatli emasligi haqidagi masalani yechadigan samarali usul mavjud emas. Shuning uchun ham predikat va u bilan bog‘liq kvantor tushunchalaridan foydalanadigan matematik nazariyalarda aksiomatik usullardan foydalanish zarur bo‘lib qoladi. Berilgan aksiomalar sistemasi negizida qurilgan aksiomatik nazariya deb shu aksiomalar sistemasiga tayanib isbotlanuvchi hamma teoremalar majmuasiga aytiladi. Aksiomatik nazariya formal va formalmas nazariyalarga bo‘linadi. Mantiq jarayonini turli matematik belgilar bilan ifodalashga intilish Arastu asarlaridayoq ko‘zga tashlanadi. 16 – 17 asrlarga kelib, mexanika va matematika fani rivojlanishi bilan matematik metodni mantiqqa tadbiq etish imkoniyati kengaya bordi. Nemis faylasufi Leybnits har xil masalalarni yechishga imkon beruvchi mantiqiy matematik metod yaratishga intilib, mantiqni matematiklashtirishga asos soldi. Mantiqiy jarayonni matematik usullar yordamida ifodalash asosan 19 asrlarga kelib rivojlana boshladi. Aksiomatik mantiqiy sistema bo’lib, mulohazalar algebrasi esa uning interpretasiyasidir (talqinidir). Berilgan aksiomalar sistemasi negizida (bazasida) qurilgan aksiomatik nazariya deb shu aksiomalar sistemasiga tayanib isbotlanuvchi hamma teoremalar majmuasiga aytiladi. Aksiomatik nazariya formal va formalmas nazariyalarga bo’linadi.