Векторы Римана — Зильберштейна
Если ввести комплексный вектор Римана — Зильберштейна и комплексно сопряжённый ему вектор :
то уравнения Максвелла сводятся к двум:
При отсутствии сторонних зарядов и токов остаётся только второе уравнение (первое из-за равенства дивергенции ротора нулю в этом случае удовлетворяется автоматически с точностью до не зависящей от времени компоненты):
В отличие от волнового уравнения, которое получаются в этом случае для векторов поля или потенциала, последнее векторное дифференциальное уравнение имеет первый, а не второй порядок и поэтому в ряде случаев может быть проще для решения.
Для гармонического поля с зависимостью вектор является собственным вектором оператора ротора:
При выбранной нормировке имеет смысл комплексной амплитуды электромагнитного поля, а его квадрат модуля
имеет смысл плотности энергии поля.
Вектор Пойнтинга:
Векторы и можно интерпретировать как волновые функции циркулярно поляризованных фотонов.
Ковариантная формулировка
С современной точки зрения, четырёхмерная ковариантная формулировка электродинамики, и в частности — запись уравнений Максвелла в таком виде, является физически наиболее фундаментальной.
Практически она приводит, кроме явной ковариантности, к значительно большей компактности уравнений, а значит определенной красоте и в ряде случаев удобству, и более органично и прямо включает в себя единство электромагнитного поля.
Под ковариантной формулировкой понимают два различающихся, но прямо и непосредственно связанных варианта: лоренц-ковариантная формулировка в плоскомпространстве-времени Минковского и общековариантная формулировка для общего случая искривленного пространства-времени (стандартно рассматриваемая в контексте общей теории относительности). Второй вариант отличается от первого тем, что метрика пространства-времени в нём не постоянна (что может означать как присутствие гравитации, так и просто использование более широкого класса координат, например, соответствующих неинерциальным системам отсчёта), и во многом сводится к замене обычных производных по (четырехмерным) координатам на ковариантные производные (в значительной части случаев это сводится к механической замене первых на вторые). Кроме прочего, второй вариант позволяет исследовать взаимодействие электромагнитного поля с гравитацией.
Ниже сначала рассмотрен (как более простой) первый вариант — вариант лоренц-ковариантной формулировки в плоском пространстве-времени.
Do'stlaringiz bilan baham: |