B I B L I O G R A P H Y
679
[Fle74]
H. Fleischner. The square of every two-connected graph is Hamiltonian.
J.
Combinatorial Theory, B, 16:29–34, 1974.
[Fle80]
R. Fletcher.
Practical Methods of Optimization: Unconstrained Optimiza-
tion, volume 1. John Wiley, Chichester, 1980.
[Flo62]
R. Floyd. Algorithm 97 (shortest path).
Communications of the ACM, 7:345,
1962.
[Flo64]
R. Floyd. Algorithm 245 (treesort). Communications of the ACM, 18:701,
1964.
[FLPR99]
M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. In Proc. 40th Symp. Foundations of Computer Science, 1999.
[FM71]
M. Fischer and A. Meyer. Boolean matrix multiplication and transitive clo-
sure. In
IEEE 12th Symp. on Switching and Automata Theory, pages 129–
131, 1971.
[FM82]
C. Fiduccia and R. Mattheyses. A linear time heuristic for improving net-
work partitions. In
Proc. 19th IEEE Design Automation Conf., pages 175–
181, 1982.
[FN04]
K. Fredriksson and G. Navarro. Average-optimal single and multiple ap-
proximate string matching.
ACM J. of Experimental Algorithmics, 9, 2004.
[For87]
S. Fortune. A sweepline algorithm for Voronoi diagrams.
Algorithmica,
2:153–174, 1987.
[For04]
S. Fortune. Voronoi diagrams and Delauney triangulations. In J. Goodman
and J. O’Rourke, editors, Handbook of Discrete and Computational Geom-
etry, pages 513–528. CRC Press, 2004.
[FPR99]
P. Festa, P. Pardalos, and M. Resende. Feedback set problems. In D.-Z.
Du and P.M. Pardalos, editors, Handbook of Combinatorial Optimization,
volume A. Kluwer, 1999.
[FPR01]
P. Festa, P. Pardalos, and M. Resende. Algorithm 815: Fortran subroutines
for computing approximate solution to feedback set problems using GRASP.
ACM Transactions on Mathematical Software, 27:456–464, 2001.
[FR75]
R. Floyd and R. Rivest. Expected time bounds for selection.
Communica-
tions of the ACM, 18:165–172, 1975.
[FR94]
M. F¨
urer and B. Raghavachari. Approximating the minimum-degree Steiner
tree to within one of optimal. J. Algorithms, 17:409–423, 1994.
[Fra79]
D. Fraser. An optimized mass storage FFT.
ACM Trans. Math. Softw.,
5(4):500–517, December 1979.
[Fre62]
E. Fredkin. Trie memory. Communications of the ACM, 3:490–499, 1962.
[Fre76]
M. Fredman. How good is the information theory bound in sorting? Theo-
retical Computer Science, 1:355–361, 1976.
[FS03]
N. Ferguson and B. Schneier.
Practical Cryptography. Wiley, 2003.
[FSV01]
P. Foggia, C. Sansone, and M. Vento. A performance comparison of five
algorithms for graph isomorphism. In 3rd IAPR TC-15 Workshop on Graph-
based Representations in Pattern Recognition, 2001.
680
B I B L I O G R A P H Y
[FT87]
M. Fredman and R. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms.
J. ACM, 34:596–615, 1987.
[FvW93]
S. Fortune and C. van Wyk. Efficient exact arithmetic for computational
geometry. In Proc. 9th ACM Symp. Computational Geometry, pages 163–
172, 1993.
[FW77]
S. Fiorini and R. Wilson.
Edge-colourings of graphs. Research Notes in
Mathematics 16, Pitman, London, 1977.
[FW93]
M. Fredman and D. Willard. Surpassing the information theoretic bound
with fusion trees.
J. Computer and System Sci., 47:424–436, 1993.
[FWH04]
E. Folgel, R. Wein, and D. Halperin. Code flexibility and program efficiency
by genericity: Improving CGAL’s arrangements. In Proc. 12th European
Do'stlaringiz bilan baham: