Pittsburgh, PA, 1992.
674
B I B L I O G R A P H Y
[CM69]
E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric
matrices. In
Proc. 24th Nat. Conf. ACM, pages 157–172, 1969.
[CM96]
J. Cheriyan and K. Mehlhorn. Algorithms for dense graphs and networks
on the random access computer. Algorithmica, 15:521–549, 1996.
[CM99]
G. Del Corso and G. Manzini. Finding exact solutions to the bandwidth
minimization problem.
Computing, 62:189–203, 1999.
[Coh94]
E. Cohen. Estimating the size of the transitive closure in linear time. In
35th Annual Symposium on Foundations of Computer Science, pages 190–
200. IEEE, 1994.
[Con71]
J. H. Conway. Regular Algebra and Finite Machines. Chapman and Hall,
London, 1971.
[Coo71]
S. Cook. The complexity of theorem proving procedures. In
Proc. Third
ACM Symp. Theory of Computing, pages 151–158, 1971.
[CP90]
R. Carraghan and P. Pardalos. An exact algorithm for the maximum clique
problem. In Operations Research Letters, volume 9, pages 375–382, 1990.
[CP05]
R. Crandall and C. Pomerance. Prime Numbers: A Computational Perspec-
tive. Springer, second edition, 2005.
[CPW98]
B. Chen, C. Potts, and G. Woeginger. A review of machine scheduling:
Complexity, algorithms and approximability. In D.-Z. Du and P. Pardalos,
editors, Handbook of Combinatorial Optimization, volume 3, pages 21–169.
Kluwer, 1998.
[CR76]
J. Cohen and M. Roth. On the implementation of Strassen’s fast multipli-
cation algorithm.
Acta Informatica, 6:341–355, 1976.
[CR99]
W. Cook and A. Rohe. Computing minimum-weight perfect matchings.
IN-
FORMS Journal on Computing, 11:138–148, 1999.
[CR01]
G. Del Corso and F. Romani. Heuristic spectral techniques for the reduction
of bandwidth and work-bound of sparse matrices. Numerical Algorithms,
28:117–136, 2001.
[CR03]
M. Crochemore and W. Rytter.
Jewels of Stringology. World Scientific, 2003.
[CS93]
J. Conway and N. Sloane.
Sphere packings, lattices, and groups. Springer-
Verlag, New York, 1993.
[CSG05]
A. Caprara and J. Salazar-Gonz´
alez. Laying out sparse graphs with provably
minimum bandwidth. INFORMS J. Computing, 17:356–373, 2005.
[CT65]
J. Cooley and J. Tukey. An algorithm for the machine calculation of complex
Fourier series.
Mathematics of Computation, 19:297–301, 1965.
[CT92]
Y. Chiang and R. Tamassia. Dynamic algorithms in computational geome-
try. Proc. IEEE, 80:1412–1434, 1992.
[CW90]
D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pro-
gressions.
J. Symbolic Computation, pages 251–280, 1990.
[Dan63]
G. Dantzig.
Linear programming and extensions. Princeton University Press,
Princeton NJ, 1963.
B I B L I O G R A P H Y
675
[Dan94]
V. Dancik. Expected length of longest common subsequences. PhD. thesis,
Univ. of Warwick, 1994.
[DB74]
G. Dahlquist and A. Bjorck. Numerical Methods. Prentice-Hall, Englewood
Cliffs NJ, 1974.
[DB86]
G. Davies and S. Bowsher. Algorithms for pattern matching.
Software –
Do'stlaringiz bilan baham: