Practice and Experience, 16:575–601, 1986.
[dBDK
+
98]
M. de Berg, O. Devillers, M. Kreveld, O. Schwarzkopf, and M. Teillaud.
Computing the maximum overlap of two convex polygons under transla-
tions. Theoretical Computer Science, 31:613–628, 1998.
[dBvKOS00] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Compu-
tational Geometry: Algorithms and Applications. Springer-Verlag, Berlin,
second edition, 2000.
[DEKM98]
R. Durbin, S. Eddy, A. Krough, and G. Mitchison. Biological Sequence Anal-
ysis. Cambridge University Press, 1998.
[Den05]
L. Y. Deng. Efficient and portable multiple recursive generators of large
order. ACM Trans. on Modeling and Computer Simulation, 15:1–13, 2005.
[Dey06]
T. Dey. Curve and Surface Reconstruction: Algorithms with Mathematical
Analysis. Cambridge Univ. Press, 2006.
[DF79]
E. Denardo and B. Fox. Shortest-route methods: 1. reaching, pruning, and
buckets. Operations Research, 27:161–186, 1979.
[DFJ54]
G. Dantzig, D. Fulkerson, and S. Johnson. Solution of a large-scale traveling-
salesman problem. Operations Research, 2:393–410, 1954.
[dFPP90]
H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a
grid. Combinatorica, 10:41–51, 1990.
[DGH
+
02]
E. Dantsin, A. Goerdt, E. Hirsch, R. Kannan, J. Kleinberg, C. Papadim-
itriou, P. Raghavan, and U. Sch¨
oning. A deterministic (2
− 2/(k + 1))n
algorithm for k-SAT based on local search. Theoretical Computer Science,
289:69–83, 2002.
[DGKK79]
R. Dial, F. Glover, D. Karney, and D. Klingman. A computational analysis
of alternative algorithms and labeling techniques for finding shortest path
trees. Networks, 9:215–248, 1979.
[DH92]
D. Du and F. Hwang. A proof of Gilbert and Pollak’s conjecture on the
Steiner ratio. Algorithmica, 7:121–135, 1992.
[DHS00]
R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley-Interscience,
New York, second edition, 2000.
[Die04]
M. Dietzfelbinger. Primality Testing in Polynomial Time: From Randomized
Algorithms to “PRIMES Is in P”. Springer, 2004.
[Dij59]
E. W. Dijkstra. A note on two problems in connection with graphs. Nu-
merische Mathematik, 1:269–271, 1959.
[DJ92]
G. Das and D. Joseph. Minimum vertex hulls for polyhedral domains. The-
oret. Comput. Sci., 103:107–135, 1992.
676
B I B L I O G R A P H Y
[Dji00]
H. Djidjev. Computing the girth of a planar graph. In Proc. 27th Int. Collo-
quium on Automata, Languages and Programming (ICALP), pages 821–831,
2000.
[DJP04]
E. Demaine, T. Jones, and M. Patrascu. Interpolation search for non-
independent data. In Proc. 15th ACM-SIAM Symp. Discrete Algorithms
(SODA), pages 522–523, 2004.
[DL76]
D. Dobkin and R. Lipton. Multidimensional searching problems. SIAM J.
Computing, 5:181–186, 1976.
[DLR79]
D. Dobkin, R. Lipton, and S. Reiss. Linear programming is log-space hard
for P. Info. Processing Letters, 8:96–97, 1979.
[DM80]
D. Dobkin and J. I. Munro. Determining the mode. Theoretical Computer
Science, 12:255–263, 1980.
[DM97]
K. Daniels and V. Milenkovic. Multiple translational containment. part I:
an approximation algorithm. Algorithmica, 19:148–182, 1997.
[DMBS79]
J. Dongarra, C. Moler, J. Bunch, and G. Stewart. LINPACK User’s Guide.
SIAM Publications, Philadelphia, 1979.
[DMR97]
K. Daniels, V. Milenkovic, and D. Roth. Finding the largest area axis-
parallel rectangle in a polygon. Computational Geometry: Theory and Ap-
Do'stlaringiz bilan baham: |