174, 2005.
B I B L I O G R A P H Y
689
[KP98]
J. Kececioglu and J. Pecqueur. Computing maximum-cardinality matchings
in sparse general graphs. In Proc. 2nd Workshop on Algorithm Engineering,
pages 121–132, 1998.
[KPP04]
H. Kellerer, U. Pferschy, and P. Pisinger.
Knapsack Problems. Springer,
2004.
[KR87]
R. Karp and M. Rabin. Efficient randomized pattern-matching algorithms.
IBM J. Research and Development, 31:249–260, 1987.
[KR91]
A. Kanevsky and V. Ramachandran. Improved algorithms for graph four-
connectivity. J. Comp. Sys. Sci., 42:288–306, 1991.
[Kru56]
J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proc. of the American Mathematical Society, 7:48–50,
1956.
[KS74]
D.E. Knuth and J.L. Szwarcfiter. A structured program to generate all
topological sorting arrangements. Information Processing Letters, 2:153–
157, 1974.
[KS85]
M. Keil and J. R. Sack. Computational Geometry: Minimum decomposition
of geometric objects, pages 197–216. North-Holland, 1985.
[KS86]
D. Kirkpatrick and R. Siedel. The ultimate planar convex hull algorithm?
SIAM J. Computing, 15:287–299, 1986.
[KS90]
K. Kedem and M. Sharir. An efficient motion planning algorithm for a
convex rigid polygonal object in 2-dimensional polygonal space. Discrete
and Computational Geometry, 5:43–75, 1990.
[KS99]
D. Kreher and D. Stinson.
Combinatorial Algorithms: Generation, Enumer-
ation, and Search. CRC Press, 1999.
[KS02]
M. Keil and J. Snoeyink. On the time bound for convex decomposition of
simple polygons. Int. J. Comput. Geometry Appl., 12:181–192, 2002.
[KS05a]
H. Kaplan and N. Shafrir. The greedy algorithm for shortest superstrings.
Info. Proc. Letters, 93:13–17, 2005.
[KS05b]
J. Kelner and D. Spielman. A randomized polynomial-time simplex algo-
rithm for linear programming. Electronic Colloquim on Computational Com-
plexity, 156:17, 2005.
[KS07]
H. Kautz and B. Selman. The state of SAT.
Disc. Applied Math., 155:1514–
1524, 2007.
[KSB05]
J. K¨
arkk¨
ainen, P. Sanders, and S. Burkhardt. Linear work suffix array con-
struction. J. ACM, 2005.
[KSBD07]
H. Kautz, B. Selman, R. Brachman, and T. Dietterich.
Satisfiability Testing.
Morgan and Claypool, 2007.
[KSPP03]
D Kim, J. Sim, H. Park, and K. Park. Linear-time construction of suffix
arrays. In Proc. 14th Symp. Combinatorial Pattern Matching (CPM), pages
186–199, 2003.
[KST93]
J. K¨
obler, U. Sch¨
oning, and J. T´
uran. The Graph Isomorphism Problem: its
structural complexity. Birhauser, Boston, 1993.
690
B I B L I O G R A P H Y
[KSV97]
D. Keyes, A. Sameh, and V. Venkatarishnan. Parallel Numerical Algorithms.
Springer, 1997.
[KT06]
J. Kleinberg and E. Tardos.
Algorithm Design. Addison Wesley, 2006.
[Kuh75]
H. W. Kuhn. Steiner’s problem revisited. In G. Dantzig and B. Eaves, ed-
itors, Studies in Optimization, pages 53–70. Mathematical Association of
America, 1975.
[Kur30]
K. Kuratowski. Sur le probl`
eme des courbes gauches en topologie. Fund.
Do'stlaringiz bilan baham: