Teskari funksiya hosilasi Asosiy elementar funksiya hosilasi Dfirensal qoidalari



Download 192,9 Kb.
bet1/3
Sana16.03.2022
Hajmi192,9 Kb.
#497210
  1   2   3
Bog'liq
4-mavzu mavzu Hosila tushunchasi va misollar. Hosilani hisoblas (1)


Mavzu: Hosila tushunchasi va misollar. Hosilani hisoblash. Yuqori tartibli hosila. Oshkormas va parametrik funksiya hosilalarini hisoblash.
Reja:

  1. Teskari funksiya hosilasi

  2. Asosiy elementar funksiya hosilasi

  3. Dfirensal qoidalari

Teskari funksiya hosilasi.
Ta’rif. Agar y=f(x) funksiyaning x=xo nuqtadagi orttirmasi u ning argument orttirmasi x ga nisbatining x nolga intilganda chekli limiti mavjud bo’lsa, bu limit f (x) funksiyaning x o nuqtadagi xosilasi deb ataladi va yo yoki yo(x) yoki f(xo) yoki yoki ko’rinishlarda belgilanadi.
Demak ta’rifga ko’ra f o(xo)= = .
Misollar.
1.y=f(х)=с=cоnst bo’lsin. y=f(х+ х)-f(х)=с-с=0 yо= =0
2.y=f(х)=х bo’lsin. = =1; y о= =1
3.y=х2 funksiyaning х=3 nuqtadagi hosilasini toping: y+ y=(3+ х)2=9+6 х+( х)2
yо= = = (6+ х)=6;
4.y=y(х)= ,(х>0)
yо= = = =

Yig’indi, ko’paytma va bo’linmaning xosilasi.


Teorema. Agar u(x) va v(x) funksiyalar x (a,b) nuqtada va xosilalarga ega bo’lsa, u xolda ularning algebraik yisindisi, ko’paytmasi va bo’linmasi shu x nuqtada xosilaga ega bo’lib, quyidagi formulalar bo’yicha topiladi:
(u±v)o=uo±vo;
(uv)o=uov+uvo
( ) o = (v(x) 0)
Teskari funksiyaning xosilasi.
Teskari funksiyaning mavjudligi xaqidagi teoremani isbotsiz keltirib o’taylik.
1-teorema. Agar y=f(x) funksiya [a,b] kesmada aniqlangan va uzluksiz bo’lib, shu kesmada o’suvchi (kamayuvchi) bo’lsa, bu funksiyaga teskari bo’lgan x= (y) funksiya mavjud bo’ladi. y=f(x) ga teskari bo’lgan funksiyani topish uchun tenglamani x ga nisbatan yechish kerak.
2-teorema. Agar y=f(x) funksiya x nuqtada chekli fo(x) 0 xosilaga ega bo’lsa, u xolda bu funksiyaga teskari bo’lgan x= (y) funksiya xam shu nuqtada o(y)= xosilaga ega bo’ladi.

Download 192,9 Kb.

Do'stlaringiz bilan baham:
  1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish