, не изменяя своей формы, просто смещается вдоль оси абсцисс. Таким образом, параметр а является параметром сдвига (положения). Также параметр а характеризует среднее значение случайной величины.
Изменение при фиксированном а равносильно изменению масштаба кривой по обеим осям: при увеличении плотность вероятностей становится более плоской, растягиваясь вдоль оси абсцисс; при уменьшении - вытягивается вверх, одновременно сжимаясь с боков (эффект действия условия нормировки). Таким образом, параметр является параметром масштаба.
Также параметр характеризует степень разброса значений случайной величины около среднего значения а в следующем смысле. Чем меньше , тем больше при фиксированном вероятность вида , как площадь под плотностью вероятностей или, другими словами, тем при меньшем можно получить заданную вероятность вида . Это означает, что при уменьшении значения случайной величины более плотно группируются около а, то есть степень разброса значений случайной величины около среднего значения а меньше.
Если и , то нормальный закон распределения называется стандартным, его плотность вероятностей имеет вид:
и называется функцией Гаусса.
Функция распределения случайной величины имеет вид:
и не выражается в элементарных функциях. Функцию называют функцией Лапласа (или интегралом вероятностей).
Геометрическая иллюстрация.
Свойства функции Лапласа :
1. ;
2. для .
Значения функции Лапласа для табулированы.
Функция распределения случайной величины также выражается через функцию Лапласа :
.
Вероятность попадания случайной величины в заданный интервал определяется по формуле:
.
Наиболее просто выражается через функцию Лапласа вероятность попадания случайной величины в интервал длины , симметричный относительно точки :
.
Далее, если положить и учесть, что , то получаем:
.
Полученный результат носит название «Правило трех сигма». Он означает, что «практически все» значения случайной величины находятся внутри интервала в том смысле, что вероятность случайной величине принять значение, не принадлежащее этому интервалу, пренебрежимо мала ( ).
Геометрическая иллюстрация «Правила трех сигма».
Нормальный закон распределения очень распространен и имеет чрезвычайно большое значение для практики. В этом мы убедимся, когда познакомимся с центральной предельной теоремой.
5. Случайная величина, имеющая закон распределения Коши.
Говорят, что непрерывная случайная величина имеет закон распределения Коши, если множество ее возможных значений , а плотность вероятностей имеет вид:
.
Функция распределения случайной величины, распределенной по закону Коши, имеет вид:
.
Графики плотности вероятностей и функции распределения случайной величины, распределенной по закону Коши, выглядят следующим образом:
Do'stlaringiz bilan baham: |