Теория вероятностей


Важнейшие дискретные случайные величины



Download 1,06 Mb.
bet4/8
Sana30.03.2022
Hajmi1,06 Mb.
#518679
1   2   3   4   5   6   7   8
Bog'liq
Дискретные случайные величины и их закон распределения.

2.3. Важнейшие дискретные случайные величины
и их законы распределения


1. Вырожденная случайная величина.
Любую константу С можно рассматривать как случайную величину, принимающую одно значение: для любого .
Закон распределения вырожденной случайной величины имеет вид:



С



1

Выражение для функции распределения вырожденной случайной величины и ее график также имеют вырожденный вид:




С

x

F(x)

1

0

2. Индикаторная случайная величина.
С любым случайным событием А можно связать случайную величину вида:
.
Случайная величина называется индикатором случайного события А или индикаторной случайной величиной. Она принимает только два значения и , при этом
, .
Закон распределения индикаторной случайной величины имеет вид:



0

1



q

p

Аналитическое выражение и график функции распределения имеют вид:


x

3. Биномиальная случайная величина.
Биномиальной называется дискретная случайная величина , представляющая собой число успехов в n независимых испытаниях, проводимых по схеме Бернулли, с вероятностью успеха в одном испытании равной р.
Множество возможных значений биномиальной случайной величины:
.
Вероятности, с которыми значения принимаются, определяются по формуле Бернулли:
.
Закон распределения имеет вид:



0

1



n











и называется биномиальным законом распределения.
Условие нормировки при этом следует из формулы Бернулли или непосредственно из бинома Ньютона:
.
(Записать аналитическое выражение для функции распределения и построить ее график самостоятельно).
Сокращенное обозначение для биномиальной случайной величины:
.
4. Геометрическая случайная величина.
Геометрической называется дискретная случайная величина , представляющая собой число испытаний, проводимых по схеме Бернулли, до появления первого успеха с вероятностью успеха в одном испытании равной р.
Геометрическая случайная величина имеет счетное множество возможных значений:
.
Вероятности значений определяются по формуле:
.
Закон распределения имеет вид:



1

2



n















и называется геометрическим законом распределения.
Условие нормировки при этом следует из формулы для суммы бесконечно убывающей геометрической прогрессии:
.
(Записать аналитическое выражение для функции распределения и построить ее график самостоятельно).
Сокращенное обозначение для геометрической случайной величины:
.
5. Пуассоновская случайная величина.
Пуассоновской называется целочисленная случайная величина, множество возможных значений которой
,
а вероятности, с которыми значения принимаются, задаются формулой:
.
Число называется параметром пуассоновской случайной величины.

Закон распределения имеет вид:





0

1



n















и называется пуассоновским законом распределения.
Условие нормировки при этом следует из разложения экспоненты в ряд Тейлора:
.
(Записать аналитическое выражение для функции распределения и построить ее график самостоятельно).
Сокращенное обозначение для пуассоновской случайной величины:
.

Download 1,06 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish