Дифракция частиц – рассеяние микрочастиц (электронов, нейтронов, атомов и т.п.) кристаллами или молекулами жидкостей и газов, при котором из начального пучка частиц данного типа возникают дополнительно отклонённые пучки этих частиц. Направление и интенсивность таких отклонённых пучков зависят от строения рассеивающего объекта.
Дифракция частиц может быть понята лишь на основе квантовой теории. Дифракция – явление волновое, оно наблюдается при распространении волн различной природы: дифракция света, звуковых волн, волн на поверхности жидкости и т.д. Дифракция при рассеянии частиц, с точки зрения классической физики, невозможна.
ТЕМА: ГРАНЙЫ ПРИМЕНЕИЯ МЕТОДА ХАРТРИ-ФОКА.
Метод Хартри — Фока — в квантовой механике приближённый метод решения уравнения Шрёдингера путём сведения многочастичной задачи к одночастичной в предположении, что каждая частица двигается в некотором усреднённом самосогласованном поле, создаваемом всеми остальными частицами системы. Решение уравнения Шрёдингера позволяет получить целый ряд сведений о свойствах системы, в том числе и её электронную структуру.
Метод был впервые предложен английским физиком Дугласом Хартри в 1927 году, однако содержал существенные недостатки и был впоследствии улучшен советским физиком В. А. Фоком. В отличие от Хартри, использовавшего метод самосогласованного поля с пробной волновой функцией в виде произведения одноэлектронных функций, В. А. Фок предложил в качестве пробной функции брать слэтеровский детерминант, что позволило автоматически учитывать антисимметрию полной волновой функции квантовомеханической системы по электронным переменным
Метод широко используется в квантовой химии, в частности, для проведения численного моделирования конфигурации некоторых молекул, в теории атома для расчётов свойств атомных конфигураций.
Метод Хартри — Фока также применяется для исследования физических свойств смешанных кристаллов (например, для построения моделей распределения ионов замещения по узлам кристаллической решётки и расчета тензоров градиента электрических полей).
Уравнение Шрёдингера для атомов, содержащих более одного электрона, не может быть решено в аналитическом виде. В связи с этим рассматривают приближённые методы, наиболее существенным из которых является метод самосогласованного поля. Идея метода заключается в том, что каждый электрон в атоме рассматривается как движущийся в самосогласованном поле, создаваемом ядром вместе со всеми остальными электронами. Вместе с тем этот метод может применяться не только в атомной физике, но и просто для систем взаимодействующих частиц.
Построение самосогласованного поля может осуществляться либо методом последовательных приближений (изначально предложенным Хартри) или прямым вариационным методом.
Существенно, что вычисления методом самосогласованного поля весьма громоздки, особенно для сложных атомов. Для них применяются другие методы — метод Томаса — Ферми, метод функционала плотности а также различные приближённые методы решения уравнений Хартри — Фока — например, метод Хартри — Фока — Слейтера, описанный ниже.
Уравнение Шрёдингера для атомов, содержащих более одного электрона, не может быть решено в аналитическом виде. В связи с этим рассматривают приближённые методы, наиболее существенным из которых является метод самосогласованного поля. Идея метода заключается в том, что каждый электрон в атоме рассматривается как движущийся в самосогласованном поле, создаваемом ядром вместе со всеми остальными электронами. Вместе с тем этот метод может применяться не только в атомной физике, но и просто для систем взаимодействующих частиц.
Построение самосогласованного поля может осуществляться либо методом последовательных приближений (изначально предложенным Хартри) или прямым вариационным методом.
Существенно, что вычисления методом самосогласованного поля весьма громоздки, особенно для сложных атомов. Для них применяются другие методы — метод Томаса — Ферми, метод функционала плотности а также различные приближённые методы решения уравнений Хартри — Фока — например, метод Хартри — Фока — Слейтера, описанный ниже.
Do'stlaringiz bilan baham: |