[67]
Shiyou Chen Ji-Hui Yang, Gong XG, Walsh Aron, Wei Su-Huai. Intrinsic point
defects and complexes in the quaternary kesterite semiconductor Cu
2
ZnSnS
4
. Phys
Rev B 2010;81(245204)
.
[68]
Sco
field JH, Duda A, Albin D, Ballard BL, Predecki PK. Sputtered molybdenum
bilayer back contact for copper indium diselenide-based polycrystalline thin-
filmsolar cells. Thin Solid Films 1995;260(1):26–31
.
[69]
Powalla M, Dimmler B. Scaling up issues of CIGS solar cells. Thin Solid Films
2000;361:540
–6
.
[70] R. Menner, E. Gross, A. Eicke, et al. Proceedings of the 13th European photovoltaic
solar energy Conference: Nice, France; 1995. p. 2067.
[71]
Ho
ffman RA, Lin JC, Chambers JP. The effect of ion bombardment on the mi-
crostructure and properties of molybdenum
films. Thin Solid Films
1991;206(1
–2):230–5
.
[72] Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W,
Powalla M. New world record e
fficiency, Prog. Photovolt: Res. Appl. (in press
〈DOI: 10.1002/pip.1078〉
).
[73]
Raud S, Nicolet M-A. Study of the CuInSe2/Mo thin
film contact stability. Thin
Solid Films 1991;201(2):361
–71
.
[74]
Assmann L, Bern`ede JC, Drici A, Amory C, Halgand E, Morsli M. Study of the Mo
thin
films and Mo/CIGS interface properties. Appl Surf Sci 2005;246(1– 3):159–66
.
[75]
Shimizu YK, Shimada S, Watanabe M, et al. E
ffects ofMo back contact thickness on
the properties of CIGS solar cells. Phys Status Solidi A 2009;206(5):1063
–6
.
[76] J. H. Y., K. H. Kim, Y. T. Ahn, and K. H. Yoon, E
ffect of Na-doped Mo/Mo bilayer
on CIGS cells and its photovoltaic properties. In: IEEE Proceedings of the 4th world
conference on photovoltaic energy conversion (WCPEC
’06); 2006. p. 509–511.
[77]
Guill´en C, Herrero J. Low-resistivity Mo thin
films prepared by evaporation onto
30 cm × 30 cm glass substrates. J Mater Process Technol 2003;143
–144(1):144–7
.
[78] B. M. Basol, V. K. Kapur, C. R. Leidholm, A. Minnickand, and A. Halani, Studies on
substrates and contacts for CIS
films and devices. In: IEEE Proceedings of the 1st
world conference on photovoltaic energy conversion: Hawaii, USA; 1994. p.
148
–151.
[79]
Jaegaermann W, Lher T, Pettenkofer C. Cryst Res Technol 1996;31:273
.
[80]
Wada T, Kohara N, Nishiwaki S, Negami T. Thin Solid Films 2001;387:118
.
[81]
Tong J, Luo H-L, Xu Z-A, Zeng H, Xiao X-D, Yang C-L. Sol Energy Mater Sol Cells
2013;119:190
–5
.
[82]
Cui H, Liu X, Song N, Li N, Liu F, Hao X. Mater Lett 2014;125:40
–3
.
[83]
Kessler F, Rudmann D. Sol Energy 2004;77:685
–95
.
[84]
Patel M, Ray A. Phys B 2012;407:4391
–7
.
[85]
Herz K, Eicke A, Kessler F, W¨achter R, Powalla M. Thin Solid Films
2003;431:392
–7
.
[86] Janz, Stefan; Reber, Stefan. 20% E
fficient Solar Cell on EpiWafer, Fraunhofer ISE.
(14 September 2015).
[87]
rießen Marion, Amiri Diana, Milenkovic Nena, Steinhauser Bernd, Lindekugel
Stefan, Benick Jan, Reber Stefan, Janz Stefan. % E
fficiency and lifetime evaluation
of epitaxial wafers. Energy Procedia 2016;92:785
–90
.
[88]
Gaucher Alexandre, Cattoni Andrea, Dupuis Christophe, Chen Wanghua, Cariou
Romain, Foldyna Martin, Lalouat Lo
ı̈c, Drouard Emmanuel, Seassal Christian,
iCabarrocas Roca, Pere, Collin Stéphane". Ultrathin epitaxial silicon solar cells
with inverted nanopyramid arrays for e
fficient light trapping. Nano Lett
2016;16(9):5358
.
[89]
Chen Wanghua, Cariou Romain, Foldyna Martin, Depauw Valerie, Trompoukis
Christos, Drouard Emmanuel, Lalouat Loic, Harouri Abdelmounaim, Liu Jia, Fave
Alain, Orobtchouk Régis, Mandorlo Fabien, Seassal Christian, Massiot Inès,
Dmitriev Alexandre, Lee Ki-Dong, Cabarrocas Pere Roca i. Nanophotonics- based
low-temperature PECVD epitaxial crystalline silicon solar cells. J Phys D: Appl
Phys 2016;49(12):125603
.
[90] Kim, D.S.; et al., String ribbon silicon solar cells with 17.8% e
fficiency. In:
Proceedings of the 3rd world conference on photovoltaic energy conversion, 2;
2003. p. 1293
–1296.
[91]
Collins RW, Ferlauto AS, Ferreira GM, Chen C, Koh J, Koval RJ, Lee Y, Pearce JM,
Wronski CR. Evolution of microstructure and phase in amorphous, protocrystal-
line, and microcrystalline silicon studied by real time spectroscopic ellipsometry.
Sol Energy Mater Sol Cells 2003;78:143
.
[92]
Wang Hongxia. Progress in thin
film solar cells based on Cu
2
ZnSnS
4
. Int J
Photoenergy 2011:10. [Article ID 801292]
.
[93]
Yeh Min-Yen, Lei Po-Hsun, Lin Shao-Hsein, Yang Chyi-Da. Copper-zinc-tin-sulfur
thin
film using spin-coating technology. Materials 2016;9:12
.
[94]
Anta Juan A, Guillén Elena, Tena-Zaera Ramón. ZnO-Based dye-sensitized solar
cells. J Phys Chem C 2012;116(21):11413
–25
.
[95]
Akram Muhammad Aftab, Javed So
fia, Islam Mohammad, Mujhid Mohammad,
Safdar Amna. Arrays of CZTS sensitized ZnO/ZnS and ZnO/ZnSe core/shell na-
norods for liquid junction nanowire solar cells. Sol Energy Mater Sol Cells
2016;121
–128:vol146
.
[96]
Sun Kaiwen, Su Zhenghua, Yan Chang, Liu Fangyang, Cui Hongtao, Jiang
Liangxing, Shen Yansong, Hao Xiaojing, Liu Yexiang. Flexible Cu
2
ZnSnS
4
solar
cells based on successive ionic layer adsorption and reaction method. RSC Adv
2014;4:17703
–8
.
[97]
Shockley W, Queisser HJ. Jpn J Appl Phys 1961;32:510
–9
.
[98]
Delbos S. Kesterite thin
films for photovoltaics: a review. EPJ Photovolt
2012;3:35004
.
[99]
Akbar IInamdara, Jeona Ki-Yong, Wooa Hyeonseok, JungaHyunsik Ima Woong,
Kima Hyungsang. Synthesis of a Cu
2
ZnSnS
4
(CZTS) absorber layer and metal
doped ZnS bu
ffer layer for heterojunction solar cell applications. ECS Trans
2011;41(4):167
–75
.
[100]
Ennaoui A, Lux-Steiner M, Weber A, Abou-Ras D, Kotshau J, Schock HW, Schurr R,
Holzing A, Jost S, Hock R, Voß T, Schulze J, Kirbs A. Cu2ZnSnS
4
thin
film solar
cells from electro65.plated precursors: novel low-cost perspective. Thin Solid
Films 2009;517(2511)
.
[101]
Patil Pramod S. Versatility of chemical spray pyrolysis technique. Mater Chem
Phys 1999;59:185
–98
.
[102]
Perednis Ainius, Gauckler LudwingJ. Thin
film deposition using spray pyrolysis. J
Electron 2005;14:103
–11
.
[103]
Weber A, Mainz R, Unold T, Schorr S, Schock HW. In-situ XRD on formation re-
actions of Cu
2
ZnSnS
4
thin
films. Phys Status Solidi (C) 2009;6:1245–8
.
[104]
Repins I, Beall C, Vora N, DeHart C, Kuciauskas D, Dippo P, To B, Mann J, Hsu W-
C, Goodrich A, Nou
fi R. Co-evaporated Cu
2
ZnSnSe
4
films and devices. Sol Energy
Mater Sol Cells 2012;101:154
–9
.
[105]
Scragg JJ, Dale PJ, Peter LM, Zoppi G, Forbes I. New routes to sustainable pho-
tovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material. Phys
Status Solidi B 2008;245:1772
–8
.
[106]
Manser Joseph S, Christians Je
ffrey A, Kamat Prashant V. Intriguing optoelec-
tronic properties of metal halide perovskites. Chem Rev
2016;116(21):12956
–3008
.
[107]
Laurel Hamers. Perovskites power up the solar industry. Sci Org 2017
.
[108]
Wang Qian, Zhang Xisheng, Jin Zhiwen, Zhang Jingru, Gao Zhenfei, Li Yongfang,
Liu Shengzhong (Frank). Energy-down-shift CsPbCl3: Mn quantum dots for
boosting the e
fficiency and stability of perovskite solar cells. ACS Energy Lett
2017;2(7):1479
–86
.
[109]
Kojima Akihiro, Teshima Kenjiro, Shirai Yasuo, Miyasaka Tsutomu. Organometal
halide perovskites as visible-light sensitizers for photovoltaic Ccells. J Am Chem
Soc 2009;131(17):6050
–1
.
[110]
Eperon Giles E, Stranks, Samuel D, Menelaou Christopher, Johnston Michael B,
Herz Laura M, Snaith Henry J. Formamidinium lead trihalide: a broadly tunable
perovskite for e
fficient planar heterojunction solar cells. Energy Environ Sci
2014;7(3):982
.
[111]
Jiang Jiexuan, Wang Qian, Jin, * Zhiwen, Zhang Xisheng, Lei Jie, Bin Haijun,
Zhang Zhi-Guo, Li Yongfang, Liu* Shengzhong (Frank). Polymer doping for high-
e
fficiency perovskite solar cells with improved moisture stability. Adv Energy
Mater 2017;1701757
.
[112]
Saidaminov Makhsud I, Abdelhady, Ahmed L, Murali,, Banavoth, Alarousu Erkk,
Burlakov Victor M, Peng Wei, Dursun, Ibrahim Wang, Lingfei, He Yao, MacUlan,
Giacomo Goriely, Alain, Wu Tom, Mohammed Omar F, Bakr Osman M. High-
quality bulk hybrid perovskite single crystals within minutes by inverse tem-
perature crystallization
”. Nat Commun 2015;6:7586
.
[113]
Snaith Henry J. Perovskites: the emergence of a new era for low-cost, high-e
ffi-
ciency solar cells. J Phys Chem Lett 2013;4(21):3623
–30
.
[114]
Kim HS, Lee CR, Im JH, Lee KB, Moehl T. Lead iodide perovskite sensitized all-
solid-state submicron thin
film mesoscopic solar cell with efficiency exceeding 9%.
Sci Rep 2012;2(591)
.
[115]
Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI. Solvent engineering for high
performance inorganic-organic hybrid perovskite solar cells. Nat Mater
2014;13(9):897
.
[116]
Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat
Photon 2014;8(7):506
–14
.
[117]
Yang Wang, Xu aXiuwen, Hou aLiqiang, Ma aXinlong, Yang aFan, Wang*b aYing,
Li* Yongfeng. Insight into the topological defects and dopants in metal-free holey
graphene for triiodide reduction in dye-sensitized solar cells. J Mater Chem A
2017;5:5952
–60
.
[118]
Yang Wang, Xu aXiuwen, Gao aYalun, Li aZhao, Li aCuiyu, Wang aWenping, Chen
aYu, Ning aGuoqing, Zhang aLiqiang, Yang bFan, Chen aShengli, Wang aAijun,
Kong*c bJing, Li* Yongfeng. High-surface-area nanomesh graphene with enriched
edge sites as e
fficient metal-free cathodes for dye-sensitized solar cells. Nanoscale
2016;8(13059)
.
M. Ravindiran, C. Praveenkumar
Do'stlaringiz bilan baham: