Solving Trig Problems: \(\boldsymbol {\left[ {0,2\pi } \right)}\)
\(\displaystyle \sin \theta =1\)
\(\theta =\left\{ {\frac{\pi }{2}}
\right\}\)
\(\displaystyle \sin \theta =0\)
\(\theta =\left\{ {0,\pi }
\right\}\)
\(\displaystyle \cos \theta =0\)
\(\theta =\left\{ {\frac{\pi }
{2},\frac{{3\pi }}{2}} \right\}\)
\(\tan \theta +1=0\)
\(\displaystyle \begin{array}{c}\tan \theta
=-1\\\theta =\left\{ {\frac{{3\pi }}
{4},\frac{{7\pi }}{4}} \right\}\end{array}\)
\(\tan \theta -1=0\)
\(\displaystyle \begin{array}{c}\tan \theta
=1\\\theta =\left\{ {\frac{\pi }{4},\frac{{5\pi
}}{4}} \right\}\end{array}\)
\(\displaystyle \begin{array}{c}3\sqrt{2}\cos \theta
+3=0\\\text{(degrees)}\end{array}\)
\(\displaystyle \begin{array}{c}3\sqrt{2}\cos \theta =-3\\\cos
\theta =-\frac{3}{{3\sqrt{2}}}\\\cos \theta =-\frac{1}{{\sqrt{2}}}=-
\frac{{\sqrt{2}}}{2}\\\theta =\left\{ {135{}^\circ ,225{}^\circ }
\right\}\end{array}\)
\(2\sin \theta +4=3\)
\(\begin{array}{c}2\sin \theta =-
1\\\sin \theta =-\frac{1}{2}\\\theta
=\left\{ {\frac{{7\pi }}{6},\frac{{11\pi
}}{6}} \right\}\end{array}\)
\(\displaystyle 4\sec \theta
+7=-1\)
\(\displaystyle \begin{array}
{c}4\sec \theta =-8\\\sec
\theta =-2\,\,\,\,\,\left( {\cos
\theta =-\frac{1}{2}}
\right)\\\theta =\left\{
\(\displaystyle 2{{\cos }^{2}}\theta =1\)
\(\displaystyle \begin{array}{c}{{\cos
}^{2}}\theta =\frac{1}{2}\\\sqrt{{{{{\cos
}}^{2}}\theta }}=\sqrt{{\frac{1}{2}}}\\\cos
\theta =\pm \frac{1}{{\sqrt{2}}}=\pm
\frac{{\sqrt{2}}}{2}\\\theta =\left\{ {\frac{\pi
}{4},\frac{{3\pi }}{4},\frac{{5\pi }}
\(\displaystyle \sin \left( {\theta +\frac{\pi }{{18}}} \right)=0\)
\(\displaystyle \begin{array}{c}\theta +\frac{\pi }
{{18}}=0\,\,\,\,\,\,\theta +\frac{\pi }{{18}}=\pi \\\,\,\,\theta =-\frac{\pi
}{{18}}\,\,\,\,\,\,\,\theta =\frac{{17\pi }}{{18}}\\\text{Since}-\frac{\pi
}{{18}}\text{ isn }\!\!’\!\!\text{ t in}\left[{0,\text{2}\pi } \right),\\\left\{
{-\frac{\pi }{{18}}+2\pi ,\frac{{17\pi }}{{18}}} \right\}\\=\left\{
\(\displaystyle \sin \left( {\frac{\theta
}{3}+\frac{\pi }{3}} \right)=\cos \left(
{\frac{\theta }{3}+\frac{\pi }{3}}
\right)\)
\(\displaystyle \begin{array}{c}\tan
\left( {\frac{\theta }{3}+\frac{\pi }{3}}
\right)=1\\\frac{\theta }{3}+\frac{\pi }
{3}=\frac{\pi }
{4}\,\,\,\,\,\,\,\,\,\,\frac{\theta }
{3}+\frac{\pi }{3}=\frac{{5\pi }}
{4}\\\,\,\,\frac{\theta }{3}=-\frac{\pi }
{{12}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{\theta
}{3}=\frac{{11\pi }}{{12}}\\\,\,\,\theta
=-\frac{\pi }
{\frac{{2\pi }}{3},\frac{{4\pi }}
{3}} \right\}\end{array}\)
{4},\frac{{7\pi }}{4}} \right\}\end{array}\)
{\frac{{17\pi }}{{18}},\frac{{35\pi }}{{18}}} \right\}\end{array}\)
{4}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\theta
=\frac{{33\pi }}{{12}}\end{array}\)
Neither are in \(\left[ {0,2\pi }
\right)\), and adding \(2\pi \) to \
(\displaystyle -\frac{\pi }{4}\)
doesn’t work (extraneous); no
solution, or \(\emptyset\).
Here’s one where we have an inequality:
For what values of \(\theta \) is \(2\cos \theta <-\sqrt{3}\) on the \(\left[
{0,2\pi } \right)\) interval?
\(\displaystyle 2\cos \theta <-\sqrt{3}\)
\(\displaystyle \cos \theta <-\frac{{\sqrt{3}}}{2}\)
This is a little tricky; if we look on the Unit Circle, we want the cos values to be less than where \
(\displaystyle \cos \theta =-\frac{{\sqrt{3}}}{2}\). Since when \(\displaystyle \cos \theta =-
\frac{{\sqrt{3}}}{2},\,\,\theta =\left\{ {\frac{{5\pi }}{6},\frac{{7\pi }}{6}} \right\}\), the \(x\) will be less (or
to the left of) of those 2 values, so we can see that \(\displaystyle \frac{{5\pi }}{6}<\theta <\frac{{7\pi
}}{6}\text{ or }\left( {\frac{{5\pi }}{6},\frac{{7\pi }}{6}} \right)\).
You can also plug in values for cos on the Unit Circle to see which are less than \(\displaystyle -
\frac{{\sqrt{3}}}{2}\), or use a Graphing Calculator to graph the two sides of the inequality.
Do'stlaringiz bilan baham: |