Reja:
Kirish
Shartli ehtimollik
Hodisalarning bog’liqsizligi
Shartli ehtimollik ustida misollar
Xulosa
Adabiyotlar
Shartli ehtimol. Hodisalarning bog`liqsizligi
Agar hodisa ehtimolligini topishda kompleks shartlardan boshqa shartlar talab qilinmasa, bunday ehtimollikni shartsiz ehtimollik deyiladi
Ko`pgina hollarda qandaydir tasodifiy hodisa ehtimolligini musbat ehtimolga ega bo`lgan boshqa bir tasodifiy hodisasi ro`y berganlik shartida topishga to`g`ri keladi. Bunday ehtimollikka shartli ehtimollik deyiladi va kabi belgilanib, ning shartidagi ehtimolligi deb o`qiladi.
Misol: O`yin soqqasi ikki marta tashlangan bo`lsin.
-tushgan ochkolar yig`indisi to`rtdan kichik bo`lish hodisasi, esa birinchi tashlaganda bir tutish hodisasi bo`lsin. hodisasi ro`y berganlik shartida hodisasining ro`y berish ehtimolligi topilsin.
Bu holga mos elementar hodisalar fazosi 36 ta elementdan iborat bo`ladi.
va hodisalar ning qism to`plamlari:
;
.
Shuning uchun ham ehtimollikning klassik ta`rifiga asosan
; ; .
B hodisasi ro`y berganda A hodisasi ro`y berishiga (1,1),(1,2) elementar hodisalar imkon tug`diradi , shuning uchun ham
.
Faraz qilaylik, elementar hodisalar fazosi ta bir xil imkoniyatli elementar hodisalardan tashkil topgan bo`lsin. Ulardan m tasi hodisasiga, tasi hodisasiga, tasi hodisasiga imkon tug`dirsin, ( ).
Shuning uchun ham, , va .
Ta`rif: -ehtimollik fazosi bo`lsin,
hodisasining hodisasi ro`y berganlik shartidagi shartli ehtimoli deb
(1)
ga aytiladi.
Ta`rifdan quyidagilar kelib chiqadi:
1) ; 2) ; 3)
4) Agar lar juft-jufti bilan birgalikda bo`lmagan tasodifiy hodisalar ketma-ketligi bo`lsin ( ), u holda
(1) dan ga ega bo`lamiz. Xuddi shunday agar, bo`lsa, kelib chiqadi. Shunday qilib quyidagi teoremaga ega bo`lamiz:
Teorema (ko`paytirish teoremasi): Agar , bo`lsa
(2)
(2) ga ko`paytirish formulasi deyiladi.
tasodifiy hodisalar uchun bo`lsa,
bo`ladi.
Ta`rif: bo`lsa, hodisasi hodisasidan bog`liqmas deyiladi.
Agar hodisasi hodisasidan bog`liq bo`lmasa, hodisasi ham, hoisasidan bog`liq bo`lmaydi. Haqiqatan ham, ko`paytirish teoremasiga asosan hodisasi hodisasidan bog`liqmas bo`lganligi uchun ko`paytirish teoremasiga asosan
.
Bundan kelib chiqadi, ya`ni bog`liqmaslik o`zaro ekan.
Agar va hodisalari bog`liqmas bo`lsalar, va , va , va hodisalar juftliklari ham bog`lanmagan bo`ladi.
Masalan, va hodisalari bog`liqmaslikni ko`rsatamiz.
tengligidan bo`lganligi uchun
kelib chiqadi. Demak, va hodisalaribog`liqmas ekan.
Bog`liqmas hodisalar uchun ko`paytirish teoremasi
ko`rinishni oladi.
Endi hodisalarning bog`liqsizlik tushunchasini umumlshtiramiz.
Ta`rif. Agar har qanday va lar uchun
tenglik o`rinli bo`lsa, hodisalar birgalikda bog`liqmas deyiladi.
Ta`rifdan ko`rinadiki, birgalikda bog`liqmas hodisalar juft-jufti bilan bog`liqmas bo`ladi, lekin hodisalarning juft-jufti bilan bog`liqmasligidan ularning birgalikda bog`liqmasligi umuman olganda kelib chiqmaydi.
Bunga quyidagi misol yordamida ishonch hosil qilish mumkin.
S. N. Bernshteyn misoli: Tetraedrning birinchi yog`i qizil rangga ( ), ikkinchi yog`i ko`k rangga ( ), uchinchi yog`i sariq rangga ( ), to`rtinchi yog`i uchala rangga ( ) bo`yalgan. Tetraedr tashlanganda tushgan yoqda qizil, ko`k, sariq ranglarning ko`rinish ehtimollari teng va
.
Shartli ehtimollar esa
.
Demak mos shartli va shartsiz ehtimollar teng. Bu esa hodisalari juft-jufti bilan bog`liqmasligini ko`rsatadi.
Lekin va hodisalari ro`y berganligi ma`lum bo`lsa, albatta hodisasi ham ro`y beradi, ya`ni
.
Demak hodisalari birgalikda bog`liq ekan.
Teorema. ehtimollik fazosi berilgan bo`lsin. hodisalari birgalikda bo`lmagan hodisalarning to`la guruhini tashkil qilsin ( ). U holda ixtiyoriy uchun
(3)
o`rinli bo`ladi.
(3) formulaga to`la ehtimollik formulasi deyiladi.
Isboti. va lar birgalikda bo`lmagan hodisalarning to`la guruhini tashkil qilganligi uchun
, va ( ).
Qo`shish aksiomasi va sharli ehtimollik formulasiga asosan
.
Teorema isbot bo`ldi.
Masala. ta nazorat variantlaridan tasi “baxtli” birinchi variant olishga kelgan talabaning “baxtli” variant olish ehtimoli kattami, yoki ikkinchiniki.
Yechish. Birinchi talabaning “baxti” variant olish ehtimoli ga teng.
-birinchi talabaning “baxtli” variant olish hodisasi, -birinchi talabaning “baxtli” variant olmaslik hodisasi va -ikkinchi talabaning “baxtli” variant olish hodisasi bo`lsin. U holda to`la ehtimollik formulasiga asosan
.
Demak, ikkinchi talabaning “baxtli” variant olish ehtimoli ham ga teng ekan.
Endi -hodisasi ro`y bergan bo`lsa, qaysi orqali ro`y berganlik ehtimoli uchun formula keltirib chiqaramiz. Oldingi teorema shartlarida ko`paytirish teoremasiga asosan
.
Bundan to`la ehtimollik formulasiga asosan
( ) (4)
Bu formulaga Beyes formulalari deyiladi.
Masala. Idishda n ta shar bor . Oq sharlar haqida -( ) ta gipoteza bo`lishi mumkin.
-idishda ta oq shar bo`lish hodisasi bo`lsa bo`ladi. Idishdan olingan shar oq bo`lib chiqdi. (B hodisasi) Idishda ta oq sharlar bo`lgan bo`lish ehtimoli topilsin.
, u holda (4) formulaga asosan
Shunday qilib gipoteza katta ehtimolli ekan.
Хулоса
Bu mustaqil shartli ehtimollik va ularni hisoblash, shartli ehtimollikning ba’zi tadbiqlariga bag’ishlangan. Bu mustaqil ishimda asosan, maxsus nuqtalar, qutb nuqtalarva u haqidagi teorema, shartli ehtimolliklar nazariyasi, shartli ehtimolliklar haqidagi teoremalar, shartli ehtimolliklarni hisoblash usullari va shartli ehtimollikning bir necha tadbiqlari ularga doir bir qator misollar keltirilgan.
Adabiyotlar
1) Г. Худайберганов, A. Ворисов “Компдекс анализ” Тошкент (1998)
2) М.А.Лаврентьев и Б.В. Шабат “Методы теории функций комплексного переменного” (1973) 438-447 б
3) Г. Худайберганов, A. Ворисов “Математик анализ курсидан мисол ва масалалар туплами” Toshkent 2000. 292-330 b
4) Т. Азларов Х. Мансуров “ математик анализ курсидан мисол ва масалалар туплами” (1994)
5) Б.А. Фукс ва Б.В. Шабат “Функция комплексного переменного и некороъи их приложения” 1959
Do'stlaringiz bilan baham: |