SamDAQI Akademik litseyi Matematika
MATEMATIKA 3
46. O'sish tartibida yozing:
, va
A) b < a < c B) b < c < a
C) a < b < c D) a < c < b
47. Bir guruh bolalarning o’rtacha og’irligi 40 kg ga teng. Qiz bolalarning o’rtacha og’irligi 35 kg, o’g’il bolalarning o’rtacha og’irligi esa 50 kg ligi ma’lum. Agar guruh a’zolarining 20 nafari qiz bolalar bo’lsa, o’g’il bolalar sonini toping.
A) 20 B) 8 C) 10 D) 6
48. Arifmetik progressiyada 10−hadi 7 ga, 7−hadi esa 10 ga teng. Progressiyaning 12−hadini toping.
A) 13 B) 6 C) 14 D) 5
49. Agar tgα=−4 bo'lsa, ning qiymatini toping.
A) −0,5 B) −9,5 C) −3,16 D) −1,88
50. Qandaydir a, b uchun cos4x=acos4x+bcos2x+1 ayniyat bajarilsa, a+b ni toping.
A) ─4 B) 3 C) ─3 D) 0
51. Agar log325 = a, log258 = b bo’lsa, log23 ni a va b orqali ifodalang.
A) B) C) D)
52. 3−4+5−6+…..+2017−2018+2019 ni hisoblang.
A) −1011 B) 1010 C) 1011 D) −1008
53. ning qanday qiymatlarida parabola absissalar o’qi bilan umumiy nuqtaga ega?
A) B) C) D)
54. tenglamalar sistemasini yeching.
A) (3;1;4), (─2/3; ─5/3; ─1/3)
B) (─3,3; ─0,3; ─4,3), (2;5;1)
C) (─10/3; ─1/3; ─13/3), (2;5;1)
D) (1;4;0), (2;5;1)
55. x2─(k+1)x+k2+k─32 = 0 tenglama ildizlaridan biri 2 dan katta, ikkinchisi esa 2 dan kichik bo’lsa, k ning butun qiymatlari yig’indisini toping.
A) 5 B) 4 C) 6 D) 0
56. 64─x5─log2x=0 tenglamaning ildizlari ko’paytmasini toping.
A) 8 B) 64 C) 32 D) 16
57. Agar tenglama bitta yechimga ega bo’lsa, parametr nechta natural qiymatga ega?
A) 1 B) 3 C) 2 D) 0
58. tengsizlikni yeching.
A) (─∞;2) B) (0;3] C) (2;3] D) (1;3]
59. Ko’phadning ozod hadini toping.
A) 17 B) 26 C) 33 D) -9
60. f(x)= 3cosx−4sinx+3 funksiyaning qiymatlar sohasini toping.
A) [−4;6] B) [−3;7] C) [−5;5] D) [−2;8]
61. Agar f(x)=7x2+4x+5 bo'lsa, f(cosx) ni toping.
A) 7cos2 x−4cosx+5 B) 12+4cosx−7sin2 x
C) 2+4cosx−7sin2 x D) 7cos2 x+4cosx−5
62. Agar f(x) = x3 ─ 5x2 + x + a va f "(2) = f(2) bo’lsa, a ni toping.
A) 6 B) 5 C) 10 D) 12
63. aniq integralni hisoblang.
A) B) 0 C) D)
64. funksiyaning o’sish oralig’idagi eng katta manfiy butun yechimini toping.
A) -3 B) -1 C) -2 D) 0
65. ABCD trapetsiyada CF balandlik o’tkazilgan. Uning kichik asosi BC = 2 va AB = CD = AF = 5 bo’lsa, trapetsiyaning yuzini toping.
A) 25 B) 40 C) 10 D) 20
66. ABC to’g’ri burchakli uchburchakning B to’g’ri burchagi uchidan BD balandlik tushirilgan. Hosil bo’lgan ABD uchburchakka radiusi 7 ga teng, BCD uchburchakka esa radiusi 24 ga teng bo’lgan aylanalar ichki chizilgan. BD balandlikni toping.
A) 54 B) 52 C) 56 D) 58
67. Kvadratning tomonlari koordinata o'qlariga parallel va 4 ga teng. Uning markazi (2;1) nuqtada joylashgan. Kvadrat tomonlarining ordinata o'qi bilan kesishish nuqtalari koordinatalarini toping.
A) (0;−1), (0;3) B) (0;1), (0;3)
C) (0;−3), (0;1) D) (0;−2), (0;2)
68. M nuqta ABCA1B1C1 muntazam prizma ABC asosidagi BC tomonning o’rtasi bo’lsin. Prizmaning yon qirrasi ga, asosining tomonlari 16 ga teng bo’lsa, B1M to’g’ri chiziq va ABB1A1 yon yoqi orasidagi burchakning sinusini toping.
A) B) C) D)
69. va vektorlar berilgan. n ning qanday qiymatida bu vektorlar o‘zaro perpendikulyar boladi
A) B) C) − D) −
70. EF=3, FD=8, BF=2 bo’lsa FDA uchburchakning yuzini toping.
A) B) 17,5 C) 10 D) 20
71. Uchlari A(−4;0), B(5;3) va C(0;−2) nuqtalarda bo’lgan ABC uchburchakning AB tomonining Oy o’qi bilan kesishish nuqtasi koordinatasini toping.
A) (0; ) B) (0; ) C) (0; ) D) (0; )
72. Talaba 4 ta imtihonni 6 kun davomida topshirishi kerak. Buni necha xil usulda amalga oshirishi mumkin? Bunda talabaga 1 kunda ko’pi bilan bitta imtihon qo’yilishi mumkin.
A) 360 B) 24 C) 120 D) 30
73. Agar bo’lsa, x ni toping.
A) −4 B) −2 C) −3 D) −5
74. y = sin2x funksiya grafigi berilgan bo’lib, uni parallel ko’chirish yordamida y = sin2(x − m)+n funksiya grafigi hosil qilingan. Bunday parallel ko’chirishda koordinata boshi qanday nuqtaga ko’chadi?
A) N(m;n) B) N(−m;n)
C) N(m;−n) D) N(−m;−n)
75. Besh yoqli ko’pyoq(lar)ni aniqlang.
A) 1, 3 B) 1 C) 3 D) 2
Do'stlaringiz bilan baham: |