X3=
|
Y1=
|
X2=
|
X3=
|
X4=
|
X*Y=
|
X2*Y=
|
1
|
83,2078482
|
33,42302563
|
6923,546002
|
576093,3647
|
47935489,24
|
2781,058043
|
231405,8555
|
2
|
83,7835442
|
33,5022472
|
7019,682279
|
588133,8605
|
49275939,29
|
2806,937009
|
235175,131
|
3
|
84,26648295
|
33,73915254
|
7100,840149
|
598362,8253
|
50421930,82
|
2843,079722
|
239576,3289
|
4
|
84,7695862
|
33,70354264
|
7185,882745
|
609144,3067
|
51636910,82
|
2857,035363
|
242189,7055
|
5
|
85,25642563
|
33,70180509
|
7268,658111
|
619699,8097
|
52833390,73
|
2873,295439
|
244966,8989
|
6
|
85,82376395
|
33,891141
|
7365,718459
|
632153,6823
|
54253808,41
|
2908,665285
|
249632,6029
|
7
|
86,24332483
|
34,279083
|
7437,911077
|
641470,181
|
55322521,19
|
2956,34209
|
254964,7712
|
8
|
86,7316592
|
33,97955306
|
7522,380708
|
652428,5599
|
56586211,51
|
2947,103016
|
255607,1344
|
9
|
87,18696753
|
34,27624851
|
7601,567308
|
662757,6021
|
57783825,53
|
2988,442166
|
260553,2101
|
10
|
87,8332017
|
34,19103246
|
7714,671321
|
677604,2822
|
59516153,59
|
3003,10785
|
263772,5775
|
11
|
88,2589732
|
34,21899715
|
7789,64635
|
687506,1885
|
60678590,26
|
3020,133552
|
266553,8863
|
12
|
88,7723842
|
34,07882237
|
7880,536197
|
699573,9869
|
62102850,75
|
3025,258313
|
268559,3933
|
13
|
89,1893142
|
35,17276389
|
7954,733767
|
709477,2494
|
63277789,31
|
3137,03469
|
279789,9726
|
14
|
89,7293242
|
34,38195689
|
8051,351621
|
722442,3399
|
64824262,93
|
3085,069756
|
276821,2243
|
Yig`indisi
|
1211,0528
|
476,5393714
|
104817,1261
|
9076848,239
|
786449674,4
|
41232,5623
|
3569568,692
|
O`rtachasi
|
86,50377144
|
34,03852653
|
7486,937578
|
648346,3028
|
56174976,74
|
2945,183021
|
254969,1923
|
Bizning holda n = 14 va jadvalda hisoblashlarga ko`ra:
;
Olingan natijalar asosida yuqoridagi Sistema quyidagi ko`rinishda bo`ladi:
Bu sistemani yechib quyidagi ildizlarga ega bo`lamiz:
b0 18,55824963; b1 = 0,178954936
Demak, X3 va Y1 o`rtasidagi chiziqli regression bog`liqlik funksiya quyidagi ko`rinishda bo`ladi:
Y1 = 0,178954936 + 0,178954936 * X3
2.3.5.2. Parabolik empirik bo`liqlik qurish (parabolik regressiya funksiyasi koeffisiyentlarini aniqlash)
Yuqoridagilarga qo`shimcha ravishda yozamiz:
U holda quyidagi ko`rinishdagi tenglamalar sistemasiga ega bo`lamiz:
Bu sistemani yechib quyidagi ildizlarga ega bo`lamiz:
b0 = -1,95701646; b1 = 0,653625361; b2 = -0,00274418
Demak, X3 va Y1 o`rtasidagi chiziqli regression bog`liqlik funksiya quyidagi ko`rinishda bo`ladi:
Y1 = -1,95701646 + 0,653625361 * X3 - 0,00274418 * X32
2.3.6. X3 – kirish omili va Y1 chiqish o`rtasidagi empiric bog`liqlik ifodasini toppish.
2.3.6.1. Chiziqli empiric bo`liqlik qurish (chiziqli regressiya funksiyasi koeffisiyentlarini aniqlash)
Hisoblashlarni yuqoridagi X1 va Y1 uchun bajarilgan kabi olib boramiz
X3 va Y1 uchun quyidagi jadvalni tuzamiz (2.3) jadval
№
|
X3=
|
Y2=
|
X2=
|
X3=
|
X4=
|
X*Y=
|
X2*Y=
|
1
|
83,2078482
|
10,33648991
|
6923,546002
|
576093,3647
|
47935489,24
|
860,0770836
|
71565,16342
|
2
|
83,7835442
|
10,41017757
|
7019,682279
|
588133,8605
|
49275939,29
|
872,2015722
|
73076,13897
|
3
|
84,26648295
|
10,4833266
|
7100,840149
|
598362,8253
|
50421930,82
|
883,3930619
|
74440,42639
|
4
|
84,7695862
|
10,88710419
|
7185,882745
|
609144,3067
|
51636910,82
|
922,8953171
|
78233,45414
|
5
|
85,25642563
|
10,84474724
|
7268,658111
|
619699,8097
|
52833390,73
|
924,5843867
|
78826,76
|
6
|
85,82376395
|
11,39478197
|
7365,718459
|
632153,6823
|
54253808,41
|
977,9430781
|
83930,75589
|
7
|
86,24332483
|
11,24169147
|
7437,911077
|
641470,181
|
55322521,19
|
969,5208494
|
83614,70154
|
8
|
86,7316592
|
11,68141492
|
7522,380708
|
652428,5599
|
56586211,51
|
1013,148497
|
87872,0502
|
9
|
87,18696753
|
11,77515444
|
7601,567308
|
662757,6021
|
57783825,53
|
1026,640008
|
89509,62906
|
10
|
87,8332017
|
11,8056305
|
7714,671321
|
677604,2822
|
59516153,59
|
1036,926325
|
91076,55903
|
11
|
88,2589732
|
11,14319419
|
7789,64635
|
687506,1885
|
60678590,26
|
983,486877
|
86801,54192
|
12
|
88,7723842
|
12,4709349
|
7880,536197
|
699573,9869
|
62102850,75
|
1107,074624
|
98277,65389
|
13
|
89,1893142
|
15,47280899
|
7954,733767
|
709477,2494
|
63277789,31
|
1380,009222
|
123082,0761
|
14
|
89,7293242
|
13,31072425
|
8051,351621
|
722442,3399
|
64824262,93
|
1194,362291
|
107169,3212
|
Yig`indisi
|
1211,0528
|
163,2581811
|
104817,1261
|
9076848,239
|
786449674,4
|
14152,26319
|
1227476,232
|
O`rtachasi
|
86,50377144
|
11,66129865
|
7486,937578
|
648346,3028
|
56174976,74
|
1010,875942
|
87676,8737
|
Bizning holda n = 14 va jadvalda hisoblashlarga ko`ra:
;
Olingan natijalar asosida yuqoridagi Sistema quyidagi ko`rinishda bo`ladi:
Bu sistemani yechib quyidagi ildizlarga ega bo`lamiz:
b0 = -33,9932708; b1 = 0,527775479
Demak, X3 va Y2 o`rtasidagi chiziqli regression bog`liqlik funksiya quyidagi ko`rinishda bo`ladi:
Y2 = -33,9932708 + 0,527775479 * X3
2.3.6.2. Parabolik empirik bo`liqlik qurish (parabolik regressiya funksiyasi koeffisiyentlarini aniqlash)
Yuqoridagilarga qo`shimcha ravishda yozamiz:
U holda quyidagi ko`rinishdagi tenglamalar sistemasiga ega bo`lamiz:
Bu sistemani yechib quyidagi ildizlarga ega bo`lamiz:
b0 = 595,71218; b1 = -14,041987; b2 = -0,00274418
Demak, X3 va Y2 o`rtasidagi chiziqli regression bog`liqlik funksiya quyidagi ko`rinishda bo`ladi:
Y2 = 595,71218 - 14,041987* X3 + 0,084231228 * X32
2.3.7. Tajriba natijalari (tanlanmalar) asosida juft (biro milli) regression bog`liqlik hollari
2.3.7.1. Olingan natijalar bo`yicha jadval
№
|
Kirish va chiqish
|
Regressiya funksiyasi
|
X
|
Y
|
Chiziqli
|
1
|
X1
|
Y1
|
Y=
|
20,99816715
|
+
|
0,285403134
|
*X
|
2
|
X1
|
Y2
|
Y=
|
-10,3306834
|
+
|
0,479310275
|
*X
|
3
|
X2
|
Y1
|
Y=
|
34,35077786
|
-
|
0,188062373
|
*X
|
4
|
X2
|
Y2
|
Y=
|
7,909710957
|
+
|
1,137465456
|
*X
|
5
|
X3
|
Y1
|
Y=
|
18,55824963
|
+
|
0,178954936
|
*X
|
6
|
X3
|
Y2
|
Y=
|
-33,99327078
|
+
|
0,527775479
|
*X
|
№
|
Kirish va chiqish
|
Regressiya funksiyasi
|
|
Do'stlaringiz bilan baham: |