Reja: Fazoda analitik geometriya elementlari. Fazoda tekislik



Download 462,5 Kb.
bet1/2
Sana30.04.2022
Hajmi462,5 Kb.
#596937
  1   2
Bog'liq
Aylanish parabolooidi va giperboloidi bilan tekislik hamda to\'g\'ri chiziqlarni aniqlash


Aylanish parabolooidi va giperboloidi bilan tekislik hamda to'g'ri chiziqlarni aniqlash
Reja:

  1. Fazoda analitik geometriya elementlari. Fazoda tekislik

  2. Giperbola va uning kanonik tenglamasi

  3. Parabola va uning kanonik tenglamasi

4.Aylanish parabolooidi va giperboloidi bilan tekislik hamda to'g'ri chiziqlarni aniqlash

Chiziq tenglamasi koordinatalar sistemasining joylashishiga qarab turli ko`rinishda bo`lishi mumkin. Koordinatalarni almashtirish yordamida chiziqning ixtiyoriy shakldagi tenglamasini sodda (kanonik) ko`rinishga keltirish mumkin.


Ikkinchi tartibli egri chiziqning umumiy ko`rinishdagi tenglamasi deb,
Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0 (A2 + B2 + C2 ≠ 0)
shakldagi tenglamaga aytiladi.
O`rta maktab matematikasida o`rganilgan aylana ikkinchi tartibli egri chiziqlar jumlasiga kiradi. Buning tasdig`i sifatida aylanaga berilgan ta`rifni va uning sodda tenglamasini eslash kifoya. Tekislikda to`g`ri burchakli koordinatalar sistemasi tanlangan bo`lib, koordinatalar tekisligida markaz deb ataluvchi M0(a; b) nuqtadan teng radius deb ataluvchi R masofada yotuvchi nuqtalar to`plami (geometrik o`rni) bo`lmish aylana quyidagi
(x – a)2 + (y – b)2 = R2
tenglama bilan aniqlanadi (1–rasm ).


Parabola va uning kanonik tenglamasi

Tekislikda fokusi deb ataluvchi berilgan F nuqtadan va direktrisasi deb ataluvchi berilgan DD to`g`ri chiziqdan teng masofada yotuvchi nuqtalar tuplamiga parabola deyiladi.


Abssissa o`qi F fokus nuqtadan DD direktrisaga perpendikulyar ravishda o`tuvchi, ordinata o`qi esa fokus va direktrisalarning o`rtasidan o`tuvchi koordinatalar sistemasi tanlasak, parabola tenglamasi quyidagi kanonik ko`rinishni oladi
y2 = 2 P x,
bu yerda, P – fokus va direktrisa orasidagi masofa.
Direktrisa tenglamasi , fokus esa F( ; 0 ) (6 – rasm).
Koordinatalar boshi parabola uchi, abssissa o`qi esa uning simmetriya o`qidir. Parabola ekstsentrisiteti ε = 1.
Agar ordinata o`qi parabola simmetriya o`qi bo`lsa, u holda uning tenglamasi x2  = 2 P y  (P>0) ko`rinishda bo`lib, direktrisa tenglamasi va fokusi F(0; ) nuqtadir.
Uchi (x0; y0) nuqtada, simmetriya o`qlari koordinata o`qlaridan biriga parallel parabola quyidagi tenglamalar bilan aniqlanadi:
(y–y0)2 = 2P(x–x0) yoki (x–x0)2 = 2 P(y–y0).
Masala. 0y ordinata o`qiga va x2 + y2 = 4 aylanaga urinuvchi aylanalar markazlari to`plami tenglamasini tuzing.
M(x; y) – aylanalar markazlari to`plamining ixtiyoriy nuqtasi bo`lsin. Masala shartiga binoan KM = AM (7-rasm). Berilgan aylana radiusi 0K=2 ekanligini va KM = 0M – 0K tenglikni hisobga olsak, koordinatalarda quyidagi tenglamani olamiz:

x2 + y2 - 2 = |x| yoki y 2 = 4 |x| + 4.


Ushbu tenglama uchlari (-1; 0) va (1; 0) nuqtalarda, fokuslari koordinatalar boshida, direktrisalari mos ravishda x = -2 va x = 2 to`g`ri chiziqlardan iborat, abssissa o`qi simmetriya o`qi bo`lgan parabolalarni ifodalaydi (7-rasm).







Download 462,5 Kb.

Do'stlaringiz bilan baham:
  1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish