Preprint · March 020 citations reads 277 5



Download 1,92 Mb.
bet9/21
Sana29.12.2022
Hajmi1,92 Mb.
#897056
1   ...   5   6   7   8   9   10   11   12   ...   21
Bog'liq
A local basis approximation approach for nonlinear

V

= V
rg local,i
rg global
Ξi (3.1)



with V
rg local,i
n Nm rg global
∈ Rn×(Ns×Nm) and Ξ ∈ R(Ns×Nm)×Nm , where Ns is the total number of generated


×R , V
snapshots and Nm is the number of independent components contained in each local basis, which are further assumed to

×

× ×
be independent to the Nl components of the obtained local bases. In this manner, only an interpolation of the coefficient matrix per validation point Ξ is required in order to obtain a local projection basis. This interpolation scheme is graphi- cally presented in Figure 1 by the light blue surface, which represents the domain spanned by the coefficient matrices, while the interpolation of the coefficient matrices is represented by the corresponding spline. Therefore, the proposed scheme requires interpolation of the coefficient matrix, which comprises only (Ns Nm) Nm entries, removing thus the dependency on the large dimension n of the full problem. To the contrary, a straightforward interpolation scheme would need to estimate n Nm entries, which would be probably accomplished by Nm interpolation schemes, one for each n-length vector.
As briefly discussed in section 2, the interpolation is carried out on the tangent space of the manifold and aims to exploit the fact that the solution in the vicinity of each parameter sample can be spanned by a local subspace, which is herein referred to as the local basis. Within this context, the local basis at an unseen point of the parameter space can be expressed as a combination of independent groups of basis vectors, with each one of those groups extracted from the


Table 1: Reduction Framework Algorithmic Process. Ns denotes the number of training snapshots, Ndof the degrees of freedom of the model,Nt the number of simulated timesteps and Nmodes the independent components of the reduction basis. Notation is kept similar to the Equations of sections 2 and 3



Download 1,92 Mb.

Do'stlaringiz bilan baham:
1   ...   5   6   7   8   9   10   11   12   ...   21




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish