Abstract We give a proof of the Cauchy–Binet formula for the determinant of the product of two matrices that mostly avoids explicit matrix manipulations. × × × Let k



Download 15,74 Kb.
Sana31.01.2022
Hajmi15,74 Kb.
#420740
Bog'liq
CauchyBinet334


The Cauchy–Binet formula

Andrew Putman




Abstract


We give a proof of the Cauchy–Binet formula for the determinant of the product of two matrices that mostly avoids explicit matrix manipulations.



× ×

×
Let k be a field. All matrices in this note have entries in k. Let A be an n m matrix and let B be an m n matrix. The product AB is thus an n n matrix. The Cauchy–Binet formula shows how to express the determinant of AB in terms of A and B. When n = m, it reduces to the familiar fact that det(AB) = det(A) det(B).


Stating it requires introducing some notation. Let [m] = {1, . . . , m}. For I ⊂ [m], let AI be the n × |I| submatrix of A consisting of the rows of A lying in I. Similarly, let IB be the |I| × n submatrix of B consisting of the columns of B lying in I.

× ×
Theorem 0.1 (Cauchy–Binet formula). Let A be an n m matrix and let B be an m n

Σ
matrix. Then

det(AB) =
I⊂[m]
|I|=n
det(AI) det(IB).




× →
Proof. For an r s matrix C, let φC : ks kr be the associated linear map. Thus φAB
equals the composition


−→ k
kn φB
−→ kn.


m φA
Letting {˙e1, . . . , ˙en} be the standard basis for kn, we thus have that
φA φB(˙e1 ∧ · · · ∧ ˙en) = det(AB)˙e1 ∧ · · · ∧ ˙en.
To express this in terms of A and B, we will have to first understand φB : ∧n kn → ∧nkm. Let {f˙1, . . . , f˙n} be the standard basis km. The vector space ∧nkm thus has a basis
{f˙i1 ∧ · · · ∧ f˙in | {i1 < · · · < in} ⊂ [m]}.

We claim that


Σ
φB(˙e1 ∧ · · · ∧ ˙en) =
I={i1<···<in}⊂[m]


det(IB)f˙i1 ∧ · · · ∧ f˙in . (0.1)


1

n
To see this, fix some I = {i1 < · · · < in} ⊂ [m]. Let VI = (f˙i , . . . , f˙i ) ⊂ km and let

→ ∈
πI : km VI be the projection whose kernel is generated by the f˙j with j / I. Identifying

m πI
VI with kn via its natural basis, the composition




−→ k
kn φB
−→ VI

equals the linear map associated to IB. We thus have
(πI φB)(˙e1 ∧ · · · ∧ ˙en) = det(IB)f˙i1 ∧ · · · ∧ f˙in .
The equation (0.1) follows.



{ · · · } ⊂
Fixing some I = i1 < < in [m] again, the next step is to observe that if we again identify VI with kn via its natural basis, the composition



−→

I
V ,km φA kn
equals the linear map associated to AI. It follows that
φA(f˙i1 ∧ · · · ∧ f˙in ) = det(AI)˙e1 ∧ · · · ∧ ˙en.
Combining this with (0.1), we see that


Σ
φA φB(˙e1 ∧ · · · ∧ ˙en) =

Σ
I={i1<···n}⊂[m]
=
I={i1<···<in}⊂[m]
det(IB)φA(f˙i1 ∧ · · · ∧ f˙in ) det(IB) det(AI)˙e1 ∧ · · · ∧ ˙en.

The theorem follows.
Andrew Putman Department of Mathematics University of Notre Dame 164 Hurley Hall
Notre Dame, IN 46556
andyp@nd.edu





Download 15,74 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish