5. Развитие средств нагрева плазмы. Параллельно с ростом размеров токамака развивалась технология средств нагрева плазмы. Сейчас используется три различных метода нагрева:
Омический нагрев плазмы протекающим по ней током.
Нагрев пучками горячих нейтральных частиц дейтерия или трития.
Нагрев электромагнитными волнами в разных диапазонах частот.
Омический нагрев плазмы в токамаке присутствует всегда, но он недостаточен для нагрева до термоядерных температур порядка 10 – 15 кэВ (100 – 150 млн. градусов). Дело в том, что с нагревом электронов быстро падает сопротивление плазмы (обратно пропорционально ), поэтому при фиксированном токе падает и вложенная мощность. В качестве примера укажем, что в установке JET током в 3-4 МА удается нагреть плазму только до ~ 2 – 3 кэВ. При этом сопротивление плазмы настолько мало, что ток в несколько миллионов ампер (МА) поддерживается напряжением 0.1 – 0.2 В.
Инжекторы пучков горячих нейтралов появились впервые на американской установке PLT в 1976-77 годах, и с тех пор прошли большой технологический путь развития. Сейчас типичный инжектор имеет пучок частиц с энергией 80 – 150 кэВ и мощностью до 3 – 5 МВт. На большой установке обычно устанавливается до 10 – 15 инжекторов разной мощности. Полная мощность пучков, захваченная плазмой, достигает 25 – 30 МВт. Это сравнимо с мощностью небольшой тепловой электростанции. На ИТЭРе предполагается установить инжекторы с энергией частиц до 1 МэВ и суммарной мощностью до 50 МВт. Таких пучков пока нет, но идут интенсивные разработки. В Соглашении по ИТЭРу ответственность за эти разработки взяла на себя Япония.
Сейчас считается, что нагрев плазмы электромагнитными волнами эффективен в трех диапазонах частот:
нагрев электронов на их циклотронной частоте f ~ 170 ГГц;
нагрев ионов и электронов на ионной циклотронной частоте f ~ 100 МГц;
нагрев на промежуточной (нижне-гибридной) частоте f ~ 5 ГГц.
Для последних двух диапазонов частот уже давно существуют мощные источники излучения, и главная проблема здесь заключается в правильном согласовании источников (антенн) с плазмой для снижения эффектов отражения волн. На ряде больших установок за счет высокого искусства экспериментаторов удалось ввести в плазму таким путем до 10 МВт мощности.
Для первого, наиболее высокочастотного диапазона проблема изначально заключалась в разработке мощных источников излучения с длиной волны l ~ 2 мм. Первопроходцем здесь оказался Институт Прикладной Физики в Нижнем Новгороде. За полвека целенаправленного труда удалось создать источники излучения (гиротроны) с мощностью до 1 МВт в стационарном режиме. Именно такие приборы будут установлены на ИТЭРе. В гиротронах технология доведена до степени искусства. Резонатор, в котором происходит возбуждение волн электронным пучком, имеет размеры порядка 20 см, а требуемая длина волны в 10 раз меньше. Поэтому требуется резонансно вложить до 95% мощности в одну и очень высокую пространственную гармонику, а во все остальные вместе – не более 5%. В одном из гиротронов для ИТЭРа в качестве такой выделенной гармоники используется гармоника с номерами (числом узлов) по радиусу = 25 и по углу = 10. Для вывода излучения из гиротрона в качестве окна используется поликристаллический алмазный диск толщиной 1.85 мм и диаметром 106 мм. Таким образом, для решения проблемы нагрева плазмы пришлось развить производство гигантских искусственных алмазов.